
Anatomizing System Activities on Interactive Wearable Devices

Renju Liu, Lintong Jiang, Ningzhe Jiang, and Felix Xiaozhu Lin

Purdue ECE

Abstract

This paper presents a detailed, first-of-its-kind anatomy
of a commodity interactive wearable system. We asked
two questions: (1) do interactive wearables deliver
“close-to-metal” energy efficiency and interactive per-
formance, and if not (2) what are the root causes pre-
venting them from doing so? Recognizing that the usage
of a wearable device is dominated by simple, short use
scenarios, we profile a core set of the scenarios on two
cutting-edge Android Wear devices. Following a drill
down approach, we capture system behaviors at a wide
spectrum of granularities, from system power and user-
perceived latencies, to OS activities, to function calls
happened in individual processes. To make such a pro-
filing possible, we have extensively customized profilers,
analyzers, and kernel facilities.

The profiling results suggest that the current Android
Wear devices are far from efficient and responsive: sim-
ply updating a displayed time keeps a device intermit-
tently busy for 400 ms; touching to show a notification
takes more than 1 second. Our results further suggest
that the Android Wear OS, which inherits much of its ar-
chitecture from handheld, be responsible. For example,
the OS’s activity and window managers often dominate
CPU usage; a simple UI task, which should finish in a
snap, is often scheduled to be interleaved with numerous
CPU idle periods and other unrelated tasks. Our find-
ings urge a rethink of the OS towards directly addressing
wearable’s unique usage.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’15, July 27 - 28, 2015, Tokyo, Japan
©2015 ACM. ISBN 978-1-4503-3554-6/15/07 $15.00
DOI: http://dx.doi.org/10.1145/2797022.2797032

1 Introduction

A major class of wearable devices, as exemplified by An-
droid Wear and Apple Watch, are emerging as interac-
tive personal computing platforms, bringing us one step
closer to the vision of “invisible computing” by Mark
Weiser.1 With unique form factors and proximity to the
user, these wearables excel in specific tasks, most no-
tably “glanceable” notifications, sensing, and numerous
short interactions.

The tiny battery and heat dissipation area, together
with the non-decreasing user expectation, challenge
wearable system design. Despite this challenge, there
lacks an understanding of the wearable workloads, the
OS behaviors, and the resultant design implications.
Specifically speaking, two compelling questions should
be answered:

• Are current wearable devices delivering “close-
to-metal” energy efficiency and interactive perfor-
mance?

• If not, what are the root causes in the system?
In this study, we seek to answer the two questions

through systematic profiling. Our key observation is that
the use of wearable devices is dominated by a set of
core scenarios. Analogous to “compute kernels” in high-
performance computing, these scenarios decide user ex-
perience and device battery life. Fortunately, the number
of core scnenarios is fairly small, giving us the oppor-
tunity to thoroughly investigate the system activities in
these scenarios.

We have identified a set of such scenarios and mea-
sured latency and power on cutting-edge Android Wear
devices. We have observed that in these seemingly sim-
ple scenarios a user often experiences long latency and
prolonged device wake time. Some examples of these

1 Recognizing that modern wearables include a wide spectrum of
devices, we target the commercially available, interactive devices that
support third party apps. They have small displays and tiny batteries,
and are intended for daily use.

1



LG Watch R

MSM8226; 410mAh Battery

1.3” round OLED

Samsung Gear Live

MSM8226; 300mAh Battery

1.63” square AMOLED 

(a) Devices (b) Measured typical power

0

100

200

300

400

S I A D*

P
o

w
er

 /
 m

W

watch r live

Figure 1: The devices under test. Power in (b): S-device
suspended and screen off; I-device idle and screen off;
A-device recognizing “Ok Google”; D*-display power
only, a white screen with default backlight

problems include our findings that launching a minimal-
ist app takes more than 1 second, receiving a simple
weather update keeps the wearable intermittently work-
ing for 5 seconds, and turning the wrist reduces the de-
vice standby time by almost 2 minutes.

To unearth the root causes, we equip ourselves with
a suite of standard, customized, and home-made tools.
With this toolkit, we drill down into the software stack
and trace a wide spectrum of activities.

We have the following interesting and sometimes sur-
prising findings: i) the OS functions that were intended
for managing complex user apps and display overlay in-
cur the major overheads; ii) a large amount of short CPU
idle periods significantly delay a device’s entry to sleep;
iii) the OS fails to coordinate various software activities
for minimizing user-perceived latency; iv) UI animation
dominates CPU usage during simple user interactions.
Our findings suggest that a wearable OS should be engi-
neered with the unique usage pattern in mind. This may
be done by trimming down legacy software layers and
directly supporting the core use scenarios.

We have made the following contributions: we iden-
tify a set of core use scenarios for benchmarking interac-
tive wearables, describe a drill-down profiling workflow,
and present a series of insights into the root causes of
inefficiency.

2 Background

Wearables have fundamentally different usage patterns
than handhelds. According to the UI design guidelines
published by Apple [1], users’ interactions with wearable
devices focus on light tasks, which often last less than 10
seconds. This means that users are likely to use their
wearable often, expecting fast responses every time.

Among a couple of wearable OSes, Android Wear is
the one with the most public information. Inheriting
most of its architecture from of its predecessor - Android
for handheld, Android Wear features a redesigned UI for
watches. According to Google [10], Android Wear is

intended to support a small set of interaction scenarios,
including Cards (for notifications), Actions (for smart-
phone control), Contextual, and Voice command. At the
time of writing (Apr 2015), the published Android Wear
source is insufficient for generating a functional build,
raising multiple interesting challenges that will be dis-
cussed in Section 4.

We test two popular Android Wear devices, the LG
Watch R and the Samsung Gear Live, as summarized in
Figure 1. We find two hardware trends worth noting: al-
though they both feature quad Cortex-A7 cores at a max-
imum clock rate of 1.2GHz, the stock OS only uses one
core fixed at 700 MHz. Unlike handheld devices where
the display power often dwarfs the SoC power, the dis-
play power of wearables is comparable to that of SoC,
making energy-efficient processing even more important.

3 Core Use Scenarios

Our driving motivation is that the use of wearables is
dominated by a small number of core use scenarios, on
which system profiling and design should focus. We
identify a representative set of scenarios that fall into
three categories.

Notification: The device has some new information,
e.g. weather update, that may deserve user’s atten-
tion. To display a notification, a wearable device often
presents brief texts or static images in a non-disruptive
fashion, e.g. as Cards [10]. In daily use, notifications
can be frequent and diverse.

Sensing: The device acquires contexts, e.g. user phys-
ical activities, by sampling and processing I/O data peri-
odically. As a wearable system is heavily driven by vari-
ous contexts [4], these scenarios are frequent and diverse.

Direct Interaction. The user briefly manipulates UI
such as scrolling or navigating among Cards [4] or query
information through voice command. Each direct inter-
action often lasts for a couple of seconds.

These scenarios under test are summarized in Table 1.
These are by no means exhaustive, but we hope we have
captured typical and representative ones.

4 Profiling Methodology

Focusing on these core use scenarios, we seek to an-
swer the two aforementioned questions through system-
atic profiling.

To obtain both an aerial view and interesting close-
ups, we need to cover a wide range of system compo-
nents and do so at different temporal and spatial granu-
larities. However, the high overhead coming from fine
granulated profiling is likely to skew our measurements,

2



Table 1: The core use scenarios under test. Measurements are collected from LG Watch R externally.
 

Scenario Description 
Duration (D) or  

Latency (U) /ms 
Energy (E) /mJ 

Power (P) /mW 

b
kg

n
d
 update A minimalist watch face is updated with a new minute value. D: 435 E: 63 

notif Receive a weather Card from the phone (over Bluetooth). D: 5100 E: 592 

motion User’s wrist motion wakes up the device. D: 7170 E: 1515 

se
n

si
n

g
 accel A minimalist program sampling the accelerometer. Screen is off. P: 83 

heart A minimalist program sampling the heart rate sensor. Screen is off. P: 105 

baro A minimalist program sampling the barometer. Screen is off. P: 113 

In
te

ra
ct

io
n
 

lch.set Screen is on; touch to launch “System Settings” (preloaded in mem). U1:967   U2:300 E: 485 

lch.calc Screen is on; touch to launch a calculator app (light). U1:950   U2:342 E: 672 

lch.game Screen is on; touch to launch DeadlySpikes (heavy). U1:283   U2:2708 E: 1634 

voice Screen is on; speak “Ok Google” to activate voice command.  U1:242   U2:525 E: 769 

touch Touch an asleep watch to light up the watch face. U1:225   U2:933 E: 1627 

navi Activate the watch; pop up the “Weather” card; navigate and dismiss.  U1:92     U2:92 E: 4824 

(From power monitor)..….…………………………………P: average power; E: energy; D: the duration of device being awake  

(From slow motion video)..U1: latency from user input end to UI animation start; U2: latency from UI animation start to its end  

Binder.ExecTransact() 

Thread 1     function calls 

suspended idle 

active 

Thread 2 

Slow  

motion 

video 

Power 

trace 

… … 

am.CheckPermission() 

Binder.ExecTransact() 

wm.Layout() wm.Layout() 

… 

System 
Profiling 

Process 
Profiling 
 

Time 

9:00 
Apr 29 

9:00 
Apr 29 

9:00 
Apr 29 

E
xt

. 
m

ea
su

re
m

en
t 

Figure 2: An overview of our drill-down profiling
methodology (with an example scenario)

as will be shown in our experiments discussed in Sec-
tion 4.1.

To address this challenge, our profiling follows a drill-
down approach done at three levels. Each level has an
increasingly narrower scope and finer granularity, where
the higher level steers the focus of the lower level. They
are summarized below and shown in Figure 2.

P1 External measurement. Without tapping into the
device, we measure power and latency as the ground
truth.

P2 System-level profiling. Zooming into specific time
windows, we trace events that happen inside the OS
(both kernel and daemons) and across processes.

P3 Process-level profiling. Further zooming into spe-
cific processes, we capture the function call history.

The multi-level profiling raises an extra challenge: in
order to correlate the outcome across levels (e.g. map-
ping a long delay observed in P2 to specific function calls
traced in P3), multiple levels of profiling must be turned
on in the same run, in which the overhead from a lower
level may skew the measurements taken at a higher level.
To have non-skewed measurements, we repeat each pro-
filed scenario multiple times and apply one extra level of
profiling incrementally: first run with P1 only, the next
with P1 and P2, and the final run with all three.

4.1 Profiling Workflow
Next we sketch our profiling methodologies at each level.

External measurement: We focus on getting the
ground truth on two metrics: user-perceived latency and
device power. For latency, we shoot slow motion videos
of the wearable device under test and measure the inter-
action latencies by manually analyzing video frames. To
do so, we use an iPhone 5s shooting at 120fps, which
provides sufficient temporal resolution for identifying
long latencies in the order of hundreds of milliseconds.

To measure power, we replace a device’s battery with
one Monsoon power monitor, a standard way for mea-
suring mobile device power consumption.

System-level profiling: Focusing on interesting time
windows (e.g. long latency, recurring activities) re-
vealed in the external measurement, we use system-level
profiling to learn the overall system workload and pin-
point resource-demanding system components. We use
ftrace, a Linux kernel facility that provides API for both
user and kernel code to generate globally ordered trace
records. We have experimentally confirmed that ftrace
introduced little power and latency overheads, which are
even smaller than the standard deviations of the external
measurements.

3



We tap into a set of pre-existing ftrace tracepoints in
the OS. In the kernel, these include events about con-
text switches, CPU idle states, binder IPC transactions,
and block I/O. In the Android framework, these include
user touch inputs, activity manager, window manager,
and display. To further gain visibility into system sus-
pend and resume transitions, we backported the suspend
tracepoints from Intel’s SuspendResume project [13] to
our kernels.

As a result, one captured system-level trace is a list of
ftrace events with their global timestamps and the iden-
tifiers of their enclosing contexts, such as threads.

Process-level profiling: System-level profiling helps
to identify resource-demanding processes, e.g., those us-
ing long CPU time. However, this information is still too
coarse-grained. A daemon process, for example, often
run various OS services on behalf of different user apps.
To further track the root causes of inefficiency we need to
discover what functions were responsible for the exces-
sive resource use. Usually, such function information can
be extracted from program’s debugging symbols, which
is a method used by popular profiling tools such as Linux
perf. Unfortunately, these symbols are absent on the pro-
duction Wear devices being profiled.

To overcome this limit, we leverage the fact that most
important Android processes – from apps to OS daemons
– run atop Android runtime (ART), which has a built-in
function tracer. Once turned on, the tracer will keep a
history of function calls happened in a given process: the
function name, the entry and exit timestamps, and the
enclosing objects and threads. The function and object
names provide fine-grained information for us to infer
the workload semantics.

In this function trace, each timestamp has two ver-
sions generated by two clocks: the global clock, a rough
equivalence to the wall clock; a thread-local clock, which
only ticks when the thread is running. The dual clocks
are proven useful: we use the global clock for correlat-
ing function calls with system-level activities and use the
thread clock to determine a function’s CPU usage.

The process-level profiling incurs a high overhead,
e.g., it extends the launch latency in lan.set by 1.7x. This
justifies our method of incrementally applying process-
level profiling discussed earlier.

Post-analysis: We collect the absolute numbers of la-
tency by only turning on the system-level tracing in run-
ning scenarios. In order to further break down the la-
tency, we run the scenarios again and collect both the
system-level and process-level traces at the same time,
whose timestamps are taken from the same global clock.

To correlate the system-level and process-level traces,
we build an analyzer that automatically reads in the
system-level trace, identifies “hotspot” time windows
based on hand-coded rules (e.g., app launching, device

wakeup), and uses the identified time windows to filter
function calls in the process-level trace.

4.2 Tool Customizations & Caveats

Due to the wide scope and great details we seek to cover,
no publicly available profiler works for us out of box.
To achieve our goal, we set up the profiling environment
by deep customizing public tools, patching the kernel to
overcome limits, and building new utilities.

Enabling untethered tracing: The official Android
profilers, e.g., systrace for system-level tracing and
traceview for process-level tracing, all require a wearable
device to be “tethered” (i.e. attached to the development
PC through USB) streaming data throughout the entire
profiling session. Unfortunately, tethering prevents a de-
vice from entering suspend, a power state vital to almost
all core use scenarios.

To enable untethered tracing, we have modified the of-
ficial profilers and complemented them with our helper
scripts for both PC and device. As a result, the modified
profilers can start (both system-level and process-level)
profiling on a tethered wearable device. Once started,
tracing will continue even after the device is discon-
nected from the PC and undergoes various power state
transitions. When the tracing is finished, device can be
tethered again and the trace buffered in device’s memory
can be transferred to the PC.

Unifying global clocks: As stated previously, an es-
sential step in our profiling methodology is to corre-
late the system-level events with the process-level events.
This requires all related events to carry timestamps from
one unified global clock. Despite that ART uses mono-
tonic clock for the process-level trace, ftrace, the system-
level tracer, provides no option of using a monotonic
clock as in Linux 3.10. Since we cannot rebuild ART
due to the lack of full Wear source, we have patched the
kernels to add the monotonic clock support to ftrace. Re-
lated utilities are also modified accordingly.

Tracing without root privilege: As expected, captur-
ing system-level events with ftrace requires root privi-
lege. Due to the security feature introduced in Android
4.4, any root shell obtained through the well-known
“device rooting” must depend on a user-level daemon
call daemonsu [5], which, according to our observation,
runs periodically and brings CPU out of idle spuriously.
Rewriting Android’s default security property does not
work on Wear: it results in an unbootable image.

To eliminate the need for daemonsu, we patched the
kernel to relax the permissions on the ftrace interface,
and killed daemonsu before any profiling.

4



0

20

40

60

80

100

%
 o

f 
th

e 
sc

en
ar

io
 d

u
ar

ti
o

n
 

Idle Related:Daemon

Related:App Unrelated:Daemon

Unrelated:App Undecided:Daemon

Undecided:App

0

20

40

60

80

100

%
 o

f 
sy

st
em

 s
er

v
er

 

Activity Manager Power Manager Window Manager Display Manager

Choreographer Alarm Manager Content Service Misc

Activity Manager 

Others
ActivityStackSupervisor
PendingIntentRecord
Service.finishReceiver
Service.startActivity

update 

Activity Manager 

Others

removeContentProvider

activityIdle

activityPaused

startActivity

lch.set lch.set (U1) 

(a) A breakdown of global CPU usage  (b) A breakdown of CPU usage of system server , a key OS daemon 

Unrelated 

Hotword 

Logd 

Mediaserver… 

Idle 

Total: 126 ms 

Count: 78 

Avg: 1.6 ms 

Figure 3: CPU usage during test scenarios. Device: LG Watch R. See Table 1 for scenario description.

5 Top Findings

Our top-down profiling essentially puts the core scenar-
ios under a microscope, opening the gate to a number of
new findings. Next, we present a couple of discovered
symptoms and then the major causes of them.

Symptoms: inefficient pacing and sluggish racing

The external measurement described in Section 4 has an-
swered the first question in Section 1, by showing two
serious symptoms.

The background scenarios (“pacing”) are often highly
inefficient: to complete a simple task, the system is wo-
ken up from suspension and works at an intermittent
schedule for a prolonged period. In update, all the useful
work is changing the displayed minute on a minimalist
watch face UI. However, this simple task keeps the de-
vice awake for around 400 ms, of which 88.7% is CPU
busy time. In this per-minute task, 63 mJ is consumed;
in one day, this reduces the standby battery life by 1.5
hours. The situation is even more severe in notif : to re-
ceive a weather update from smartphone, the device is
kept awake for around 5 seconds (of which 22.5% is CPU
busy time) and consumes around 600 mJ.

Direct interactions (“racing”), on the other hand, of-
ten see long latencies. As shown in Table 1, touching to
wake a device takes 1.1 seconds (touch); launching the
lightweight Settings activity that already resides in mem-
ory takes 1.3 seconds (lch.set); launching a full-blown
app is even more sluggish (lch.game, 3 seconds). Given
that most user interactions only last for a couple of sec-
onds (§2), these latencies are unacceptably long. Adding
more CPU resources does not help much: with four cores
running at the highest frequency, the latency in lch.set is
only reduced to 1.0 second, which is still unacceptable.

OS overhead dominates execution

A majority of the above latency is contributed by the An-
droid Wear OS, most notably its user-space daemons. In
stage U1 of lch.set, the execution of system server, one
key OS daemon, constitute 38.9% of user wait time as
shown in Figure 3(a). The situation is similar in update,
where 55.9% of device wake time is consumed by this
OS daemon.

Inside system server, as shown in Figure 3(b), the top
CPU consumers include the manager functions for app
activities, windows and power. These sophisticated man-
agers are a legacy of handheld, where the overheads were
warranted by the diversity and complexity of apps and
windows. However, they become heavy burdens for the
few, lightweight tasks on wearable.

Sleep procrastination

When the system is briefly awake for a simple job (which
almost always involves multiple processes), ideally, the
system should finish everything related to the job in a
non-stop fashion and go back to sleep as soon as possi-
ble. However, our observation is just the opposite – the
device wake duration is interspersed with a large amount
of short CPU idle periods, which extends the wake time
for no good. In lch.set (U1), as Figure 3(a) shows, the
scenario duration consists of ∼40% of idle periods, each
of which only lasts for 1.6 ms on average. This is also
true for simpler scenarios, such as update in which 25
idle periods constitute 11.3% of the device total wake
time.

We want to stress that the observed idling is inter-
leaved with busy executions and is thus different from the
“lingering” tail time that has been reported previously. It
is unlikely due to I/O neither, e.g. none of the 25 idle pe-
riods in update are coincident with network or block op-

5



erations. Our initial suspects are animation or IPC com-
munication, which we will verify in future exploration.

Uncoordinated activities
By design, after a user input is received, the OS should
coordinate various activities to favor servicing the user
input. Unfortunately, within such critical time windows
a number of unrelated activities are often obstructing
the output production. By examining process schedul-
ing history and tracing binder IPC messages, we are able
to categorize CPU usage based on the relevance to the
pending user requests. Figure 3 (a) shows the case of
stage U1 of lch.set, where at least 5% of total CPU busy
time is due to activities that are known to be unrelated to
the launching task. In addition, 12% CPU time is con-
sumed by “undecided” activities that no evidence sup-
porting their relevance to the launching task. This sug-
gests that the OS lacks the key notion of user-perceived
latency and thus is unable to optimize towards the notion.

Overwhelming UI animation
UI animation provides appealing eye candy and hides la-
tency. However, our results show that animation often in-
curs high overhead in user’s short interactions with wear-
ables. In notif.navi, when the user is swiping to switch
display Cards, 15.6% of CPU time is dedicated to the app
renderer thread, which, through a rough estimation, ac-
counts for at least 10% of total system power consump-
tion. In reality, the animation power should further in-
clude the GPU power which is often significant. Thus,
if UI animation will remain as an important UI element,
it seems promising to redesign the OS animation frame-
work for much higher efficiency, as will be discussed in
Section 6.

6 OS Design Implications

The revealed causes imply a large room for efficiency
and latency improvement. For instance, if in update only
the related app code is executed, the wake duration can
at least be reduced by 60%, leading to a 61.4% energy
reduction for the scenario. Overall, we believe a 2x in-
crease in power efficiency and 2x reduction in latency for
core use scenarios is feasible through careful OS designs,
some of which are discussed below.

Cleaning cruft: Android Wear inherits most of the OS
architecture from handhelds, which we already demon-
strated as clumsy in Section 5. It seems reasonable to
purge such “cruft” from the OS by aggressively trimming
down the Android core.

Interaction-centric: Driven by the unique UI pat-
tern, we advocate to engineer a wearable OS with the
short and impromptu uses in mind. For instance, the OS
should track user-perceived latencies and minimize them

on-the-fly. This is much harder than CPU scheduling:
one user activity often spans multiple processes and is
serviced by a number of randomly selected OS daemon
threads. This requires the OS to have a first-class notion
for latency and reorganize existing resource management
mechanisms around such a notion.

Specialized for core scenarios: A small set of core
use scenarios may deserve specialized support. For in-
stance, rendering smooth UI animation requires both
CPU and GPU to sprint in rhythm and is often intensive.
Fortunately, the workload is fairly predictable. Thus, in-
stead of periodically producing new frames, the OS may
speculatively render frames or even replay pre-recorded
ones. This allows similar visual effects at a much lower
cost, thus qualifying weaker processors for intensive UI
animation.

7 Concluding Remarks

Future Profiling Puzzles Through this preliminary
study, we have demonstrated modern wearables’ inad-
equacies in efficiency and performance, and have iden-
tified a series root causes to account for some inadequa-
cies. Compared to the answered questions, however, we
may have raised more to be addressed in future study, e.g.
why do numerous CPU idle periods exist in a “sprinting”
period, why can’t extra CPU resources help to aggres-
sively cut down latency, and how does network and GPU
activities affect efficiency and performance.

OS Design Challenges While our findings justify ag-
gressive (or even radical) changes in wearable OS, we
argue for maximizing compatibility with handheld OS in
doing so. Due to the huge efforts invested in handheld
OSes and the app programming framework, a wearable
OS should be able to incorporate code from handheld OS
when appropriate. Down the road, both OSes are likely
to coevolve; any features added to one should be ported
to the other with ease. A clean-slate approach to OS de-
sign or programming paradigms is unlikely welcomed.

Related Work Much prior work has recognized the
significance of interactive systems and has studied key
aspects including energy efficiency [3, 17], latency [6,
21], thread-level parallelism [9, 2], architectural char-
acteristics [15], and file I/O behaviors [12, 16]. Al-
though none directly addresses interactive wearables,
their methodologies have sparked our study. In partic-
ular, our scenario-driven profiling echoes the argument
for application-centric workload analysis [12].

Usage pattern has been a driving force in designing
interactive systems. As smartphones become pervasive,
multiple studies have already revealed the uniqueness

6



and diversity in its usage [8, 19, 7], in particular the fre-
quent, short user interactions throughout daily use [20].
These studies motivate our efforts on interactive perfor-
mance of wearables, where interactions are even more
brief and user’s attention is more precious.

Recent academic studies on wearables are mostly app-
specific, focusing on customizing one device for a par-
ticular use, e.g. daily sensing [14, 11] and health [18].
While we recognize the necessity of app-specific wear-
ables, it is urgent to understand OS design for wearables
that act as computing platforms.

Acknowledgement

The work was supported in part by NSF Award
#1464357. The authors thank the anonymous reviewers
and the paper shepherd, Dr. Byung-Gon Chun, for their
useful feedbacks.

References

[1] Apple. Apple watch human interface guidelines. https:
//developer.apple.com/library/prerelease/

ios/documentation/UserExperience/

Conceptual/WatchHumanInterfaceGuidelines/,
2015.

[2] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner.
Evolution of thread-level parallelism in desktop applica-
tions. In Proc. Int. Symp. Computer Architecture (ISCA),
2010.

[3] A. Carroll and G. Heiser. The systems hacker’s guide
to the galaxy energy usage in a modern smartphone. In
Proceedings of the 4th Asia-Pacific Workshop on Systems,
2013.

[4] E. Connolly, A. Faaborg, H. Raffle, and B. Ryskamp. De-
signing for wearables. Google I/O, 2014.

[5] N. Elenkov. Android Security Internals: An In-Depth
Guide to Android’s Security Architecture. No Starch
press, 2014.

[6] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer. Using la-
tency to evaluate interactive system performance. In Proc.
USENIX Conf. Operating Systems Design and Implemen-
tation (OSDI), 1996.

[7] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula,
and D. Estrin. A first look at traffic on smartphones.
In Proc. ACM Internet Measurement Conference (IMC),
2010.

[8] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos,
R. Govindan, and D. Estrin. Diversity in smartphone us-
age. In Proc. ACM Int. Conf. Mobile Systems, Applica-
tions, & Services (MobiSys), 2010.

[9] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge.
Thread-level parallelism and interactive performance of

desktop applications. In Proc. ACM Int. Conf. Architec-
tural Support for Programming Languages & Operating
Systems (ASPLOS), 2000.

[10] Google. Ui patterns for android wear. https:

//developer.android.com/design/wear/

patterns.html, 2014.

[11] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assis-
tance. In Proc. ACM Int. Conf. Mobile Systems, Applica-
tions, & Services (MobiSys), 2014.

[12] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. A file is not a file: Under-
standing the i/o behavior of apple desktop applications. In
Proc. ACM Symp. Operating Systems Principles (SOSP),
2011.

[13] Intel. Intel suspendresume project. https://01.org/

suspendresume, 2015.

[14] N. Lane, P. Georgiev, C. Mascolo, and Y. Gao. Zoe:
A cloud-less dialog-enabled continuous sensing wearable
exploiting heterogeneous computation. In Proc. ACM
Int. Conf. Mobile Systems, Applications, & Services (Mo-
biSys), 2015.

[15] D. C. Lee, P. J. Crowley, J.-L. Baer, T. E. Anderson, and
B. N. Bershad. Execution characteristics of desktop ap-
plications on windows nt. In Proceedings of the 25th An-
nual International Symposium on Computer Architecture,
1998.

[16] K. Lee and Y. Won. Smart layers and dumb result: Io
characterization of an android-based smartphone. In Pro-
ceedings of the Tenth ACM International Conference on
Embedded Software, 2012.

[17] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and
L. Zhong. Draining our glass: An energy and heat char-
acterization of google glass. In Proceedings of 5th Asia-
Pacific Workshop on Systems, 2014.

[18] A. Parate, M.-C. Chiu, C. Chadowitz, D. Ganesan, and
E. Kalogerakis. Risq: Recognizing smoking gestures
with inertial sensors on a wristband. In Proceedings of
the 12th Annual International Conference on Mobile Sys-
tems, Applications, and Services, 2014.

[19] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Ko-
rtum. Livelab: Measuring wireless networks and smart-
phone users in the field. SIGMETRICS Perform. Eval.
Rev., 38(3):15–20, Jan. 2011.

[20] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast
app launching for mobile devices using predictive user
context. In Proc. ACM Int. Conf. Mobile Systems, Appli-
cations, & Services (MobiSys), 2012.

[21] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. Redline: First class support for interactivity in
commodity operating systems. In Proc. USENIX Conf.
Operating Systems Design and Implementation (OSDI),
2008.

7

https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://developer.apple.com/library/prerelease/ios/documentation/UserExperience/Conceptual/WatchHumanInterfaceGuidelines/
https://developer.android.com/design/wear/patterns.html
https://developer.android.com/design/wear/patterns.html
https://developer.android.com/design/wear/patterns.html
https://01.org/suspendresume
https://01.org/suspendresume

	Introduction
	Background
	Core Use Scenarios
	Profiling Methodology
	Profiling Workflow
	Tool Customizations & Caveats

	Top Findings
	OS Design Implications
	Concluding Remarks

