Tell Your Graphics Stack That the Display Is Circular

Hongyu Miao
~ Purdue ECE
miaoh@purdue.edu

ABSTRACT

Computer displays have been mostly rectangular since they
were analog. Recently, smart watches running Android Wear
have started to embrace circular displays. However, the
graphics stack — from user interface (UI) libraries to GPU to
display controller — is kept oblivious to the display shape for
engineering ease and compatibility; it still produces contents
for a virtual square region that circumscribes the actual cir-
cular display. To understand the implications on resource
usage, we have tested eleven Android Wear apps on a cut-
ting edge wearable device and examined the key layers of
Android Wear’s graphics stack. We have found that while
no significant amount of CPU/GPU operations are wasted,
the obliviousness incurs excessive memory and display inter-
face traffic, and thus leads to efficiency loss.

To minimize such waste, we advocate for a new software
layer at the OpenGL interface while keeping the other lay-
ers oblivious. Following the idea, we propose a pilot solu-
tion that intercepts the OpenGL commands and rewrites the
GPU shader programs on-the-fly. Through running a hand-
crafted app, we show a reduction in the GPU memory read
by up to 22.4%. Overall, our experience suggests that it is
both desirable and tractable to adapt the existing graphics
stack for circular displays.

1. INTRODUCTION

Computer displays have been rectangular for a long time.
This has been recently changed as wearable computers enter
people’s daily lives: on these computers, the display’s role of
content presentation is gradually giving way to the aesthetic
value or human factor consideration. In embracing non-
rectangular displays, smart watches are among the pioneers.
Since Moto 360 sparked the trend in 2014, more than ten
smart watch models have featured circular displays. The
trend is burgeoning.

Compared to the fast-evolving display, the graphics stack
that backs the display is mostly retaining the legacy im-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HotMobile 16, February 26-27, 2016, St. Augustine, FL, USA

© 2016 ACM. ISBN 978-1-4503-4145-5/16/02. .. $15.00

DO http://dx.doi.org/10.1145/2873587.2873603

Felix Xiaozhu Lin
Purdue ECE
xzl@purdue.edu

CPU: 4x Coretx-A7 @ 1.2 GHz

GPU: Adreno 305 @ ~400 MHz

Memory: 512 MB

Display: 1.3” round OLED. Diameter 320px

p: Percentage of hidden pixels 21.5%
f: Frames rate 60 fps
(ost home! S: Frame size 400 KB

(a) The produced (in square) (b) Device hardware specs

vs. displayed contents (in circle)
Figure 1: The LG watch R, a circular smart watch,
running the Android Wear Lollipop

plementation for engineering ease. Figure [I] shows the case
of Android Wear 5.1 “Lollipop” atop the LG watch R (9], a
cutting-edge smart watch featuring a round display. Despite
the circular display, an app is responsible for generating con-
tents for a virtual 320x320 square area that circumscribes
the actual display as shown in Figure a); in addition, all
the drawing API available to apps is based on rectangular
regions of configurable sizes. To ensure the Ul integrity, the
app developers are expected to be aware of the display shape
and not to place the important Ul elements off the circular
boundary [5]. Underneath the apps, the graphics stack —
from UI libraries to GPU to display controller — is oblivi-
ous to the circular shape of the display; they mechanically
transform the app’s Ul contents to the pixels targeting the
square area. The excessive pixels, as shaded in Figure au)7
are only discarded at the display panel — the lowest layer of
the graphics stack.

Clearly, there exists a mismatch between a circular display
and the graphics stack. While this mismatch is acquiesced
by today’s wearable OS as-is, we seek a clear understanding
of it by asking the following two questions.

1. How many resources are wasted in producing the con-
tents that are ultimately discarded due to the circular
display shape?

2. If the waste is non-trivial, how should an existing graph-
ics stack adapt accordingly?

To answer these questions, we have examined a set of eleven
typical Android Wear apps; we run them on a LG watch
R and analyze the graphics stack’s key layers. Through
examining empirical evidence collected on the device, we
have quantified the wasted resources: CPU/GPU opera-

http://dx.doi.org/10.1145/2873587.2873603

tions, memory bandwidth/capacity, and interconnect traffic.
Our findings are twofold:

e While the circular display shape does not affect an
app’s UI hierarchy much, it often discards a substan-
tial portion (up to 21.5%) of background textures and
rendered images.

e Accordingly, while no significant amount of CPU or
GPU operations are wasted, the excessive memory and
interconnect traffic — as high as 25 MBps — have led to
a noticeable efficiency loss.

The findings suggest the direction towards adapting a
graphics stack to a circular display: while revising the Ul
libraries is disruptive and unlikely to be profitable, making
the textures and rendered surfaces aware of the screen shape
is likely rewarding.

To this end, we explore the design space for introduc-
ing the awareness of display shape to the graphics stack;
we find that interposing OpenGL, the low-level interface be-
tween apps and the GPU driver, is a viable approach. Hence,
we propose to build a new software layer that rewrites the
OpenGL commands and shader programs on-the-fly to fit
the circular display, while keeping all other layers oblivious
and unmodified. A simple prototype following this idea has
reduced the GPU memory read by 21.5% and reduced the
GPU cycles by up to 12%.

We have made two major contributions in this paper:

1. Through examining a set of typical wearable apps, we
have quantified the resource waste due to the graphics
stack’s obliviousness to the circular display.

2. Towards eliminating the resource waste, we have shown
that interposing the OpenGL interface is a promis-
ing approach: we demonstrate a pilot solution that
rewrites the shader program and hence skips unneces-
sary GPU texture loading.

2. BACKGROUND & MOTIVATION

We next describe our test device, overview Android Wear’s
graphics stack, which inherits its overall structure from An-
droid for smartphone, and discuss the existing system sup-
port for circular displays.

Test device. Our test device is the LG Watch R [9],
one of the most popular smart watches. As summarized in
Figure b), the device features an LG 4237 OLED panel
with a diameter of 320 pixels; it embraces a Qualcomm’s
APQ8026 SoC engineered towards low power. By running
the STREAM benchmark [12] with all four cores at their
highest frequency, we have measured the memory bandwidth
as 1.8 GBps, which is much lower than smartphone mem-
ory bandwidth (often 5-10 GBps). Our prior work [10| has
reported the system-level power consumption of Watch R.

Android graphics stack. In anutshell, a graphics stack’s
role is to translate the app Uls to pixels shown on the dis-
play. On modern mobile devices, this procedure is heav-
ily hardware-accelerated: multiple hardware components —
CPU, GPU, and display controller — collaborate to repeat
this procedure periodically, aiming at keeping pace with the

display refresh rate, often 60 Hz. In the collaboration, these
hardware components communicate mainly through shared
buffers residing in the off-chip DRAM. Each buffer often
contains information for a rectangular region on the display.

The graphics stack produces a frame of image in three
stages from the top to bottom as shown in Figure[2 Draw-
ing is done by CPU: each app transforms its hierarchy of UI
elements, i.e. “view”s, to display lists, an intermediate rep-
resentation of the final GPU commands. For every frame,
the app translates its current display lists to OpenGL com-
mands and sends them to the GPU driver for execution.

Rendering is done by GPU: controlled by the driver, the
GPU executes the CPU-generated commands in its pipeline.
It first performs vertex/primitive processing by running shader
programs on the input vertices and assembling the vertices
into triangles. The GPU then performs rasterization: it
breaks down the triangles into fragments, runs shader pro-
grams on the fragments, and samples textures to determine
each fragment’s color. It finally performs pixel processing,
writing back the produced pixels to the DRAM.

Composition and display are done by compositor and the
display controller: once a surface is rendered by the GPU,
the owner app passes it to an OS daemon called Surface-
Flinger. SurfaceFlinger blends surfaces passed from multiple
apps by invoking hardware composer, which often resides in
the hardware display controller. After composition, the dis-
play controller transmits the final frame to display panel for
presentation.

Existing system support for circular displays. As
described in Section [T} we have observed that the Android
Wear OS is mostly oblivious to the circular shape of a dis-
play; as illustrated in Figure it functions by assuming that
the physical display is a square that circumscribes the actual
circular display.

Multiple pieces of evidence support our observation: i) in
examining the OS’s UI framework source (which is fortu-
nately open), we always see that drawable regions are spec-
ified as rectangles; ii) in peeking the test device’s rendered
surfaces or framebuffers by using Android’s GLtracer, we
always get the circumscribed square images; i) the kernel’s
device tree specifies the dimensions of the display panel as
320% 320 (shown below); this specification is the display con-
troller driver’s only knowledge about the panel.

//apq8026 -lenok-panel.dtsi:

qcom ,mdss -dsi-panel-name = "LG4237 320P OLED
command mode dsi panel";

qcom ,mdss -dsi-panel-width = <320>;

qcom ,mdss -dsi-panel-height = <320>;

Listing 1: An exerpt from the Linux kernel (3.10)
device tree for Watch R’s circular display panel

The app developers, on the other hand, are expected to
make their app Ul layout “shape-aware” [5]. In particular,
the developers are asked to place important Ul elements in a
square area called “window insets” that inscribes the circular
display, to prevent these Ul elements from being clipped by
the circular display edge.

3. HOW MANY RESOURCES ARE WASTED?

We next quantify the wasted resources due to the graphics
stack’s obliviousness to the display shape. In the discussion,

of UI Views

CPU DRAM Drawing Time Rdr.
- Apps Hidd Clipped Total Shader Shader Texture Other Ti

App Ul Display 1aden LAippe O | compilet linkt uploadt cmds | ™€
Hierarchy Lists Google keep x x x 3.6 13 4.4 29 |43
Attopedia 0 9 10 8.2 1.2 25.0 2.4 4.5
Holel9 0 5 8 30.4 1.1 4.9 4.1 2.6
OpenGL WearbottleSpinner 0 4 5 18.0 32 116.2 2.1 3.0
- a GridViewPager 0 6 9 23.9 4.4 2.0 2.0 2.8
GPU Driver N Vertices Runtastic* 0 14 17 - - - - 3.9
“ () Textures ReminderByTime* 0 13 14 - - B - 3.8
S GPU = Fitr 0 3 16 |- - - - |33
0 Weatherlive* 0 14 17 - - - - 4.6
<R (5] N n Instaweather* 0 13 16 - - - - 3.8
S .2(Disp. | Doy | Hangout* 0 13 16 - - - - 3.7

G @ Panel Controller a"Surfaces * Wearable app “Cards” + Mostly occur upon surface creation

Interface

Disp. - Unable to determine: GLTracer unable to launch app Cards
Hidden/Clipped: how many views in the UI are hidden/clipped ~ Rdr. Time: the time of rendering an UL

x Unable to determine: app crash

Note: shader compile, shader link, and texture upload are the most expensive actions in Ul drawing

Figure 2: An overview of the
graphics stack

Drawing Memory traffic: 225 KB per app bkgnd @
(CPU) Memory capacity: minor
Rendering Memory traffic: 10 MBps (2 (3]
(GPU) Memory capacity: 1| MB
Composition Memory traffic: 10 MBps [4)
(Disp. Ctrl Display interface traffic: 5 MBps (5]
& panel) Memory capacity: < 100 KB

Table 2: A summary of the estimated resource

waste, which is more than 3x of the inefficiency ad-
dressed in a prior wearable work [7]. Note that the
wasted CPU/GPU operations are insignificant.

we use “oracle” to refer to an imaginary, ideal graphics stack
tailored to the circular display: it wastes zero resource on
pixels falling out of the display edge.

App study. In order to understand the UI structure
of wearable apps, we studied eleven wearable apps that are
popular in the app store as summarized in Table These
apps represent typical interactive use of smart watches and
all feature image background for visual appeal. Focusing on
graphics, we use Android’s Hierarchy Viewer to examine
the complexity of the Ul hierarchies and how individual UI
elements intersect with the circular display edge. We further
measure the time spent in producing typical frames of the
apps: we use GLTracer to measure the drawing time and use
dumpsys to measure the CPU-perceived rendering time.

Based on the app study, we make three observations. First,
a wearable app tends to have a simple Ul hierarchy with a
small number of views, as shown in the “Total” column of Ta-
ble[l} Second, in such a hierarchy, although the views are of-
ten clipped by the circular display edge, they are rarely hid-
den, which is shown in the “Clipped” and “Hidden” columns
of Table We attribute this to the developer’s conscious-
ness of the display shape. Third, in initializing a Ul sur-
face, drawing is often expensive, as shown in the “Drawing”
columns of Table [I} while in other frames it is cheap. The
rendering cost is steadily moderate, as shown in the “Rdr.
Time” column of Table [

Motivated by these observations, we next examine the

Table 1: A list of studied wearable apps. All time values in ms.

graphics stack’s major layers as shown in Figure 2] For
each layer, we discuss the key operations and estimate how
a circular display may affect the associated resource usage.
Table 2l summarizes the resource waste.

3.1 Drawing

As described in Section 2] drawing is mainly done in the
UI libraries and GPU driver. The associated major costs
are three: ¢) transforming UI hierarchy to display lists;)
compiling GPU shader code; #4) decoding and uploading
textures to GPU. We examine these in details below.

App UI library. One app maintains a mapping between
its view hierarchy and a set of Display Lists. In order to
draw its Ul, the app traverses the view hierarchy to update
the corresponding Display Lists. When the view hierarchy is
initialized or undergoes a significant change, the app has to
rebuild substantial Display Lists. This is often expensive due
to sophisticated UI measurement and layout [4]. However,
for most frames, in particular during UI animation, existing
display lists can be incrementally updated and translated to
GL commands with low cost.

GPU driver. Once GL commands are ready, the app
submits them to the GPU driver, which will operate the
GPU accordingly. Since the GPU execution is mostly asyn-
chronous, the cost to CPU is often minor except for two
actions: compiling the GPU shader programs just-in-time
and uploading textures to the GPU-owned memory region.
This is shown in the “Shader compile” and “Texture upload”
columns of Table [I} Fortunately, the two expensive actions
often only occur upon the creation of Ul surfaces; for other
frames, the GPU driver execution only takes around 2-4 ms,
as shown in the “Other cmds” column of Table [l

Impact of a circular display. The circular display has
little impact on the execution of app UI libraries (cost i
above). The oracle solution is unlikely to see a reduced cost
of transforming UI hierarchy: as few views are hidden by
the display edge, the oracle’s view hierarchy will not be any
simpler. On the contrary, by catering to the circular edge,
the oracle may even see an increase in the overhead of UI
measurement and layout.

For the execution of the GPU driver, the oracle solution

will compile the same shader programs, paying the same
cost 7. Its texture handling (cost i), however, may decode
smaller images and move fewer bytes in uploading the tex-
tures (@). Assuming the uploaded texture has a size of T,
the wasted memory traffic is T - p. For a typical 512x512
texture used as a wearable app background, the waste is
around 225 KB.

3.2 Rendering

In rendering a UI surface, the GPU processes the CPU-
generated commands and data, produces triangles, raster-
izes them, and fills the resultant fragments with colors from
textures.

GPU execution. As shown in the “Drawing Time”
columns of Table the GPU execution is on the criti-
cal path of producing every frame. Given the observed
simple Ul hierarchy, we expect that the triangle count in
each frame is low, implying light vertex/primitive process-
ing. Furthermore, we expect much of the execution overhead
comes from rasterization, in particular the entailed mem-
ory access. Since mobile GPU is backed by the off-chip
DRAM, it has been demonstrated that a mobile GPU is
often memory-bound and the memory access also becomes
efficiency hotspots [3]. Note that due to the lack of hardware
cache coherence among CPU, GPU, and display controllers,
all memory sharing among them has to go through the ex-
ternal DRAM.

Among the memory access overheads, the following ones
are tied to the circular screen shape:

Texture reading (@)): To output pixels, the GPU frag-
ment shader loads texture and determines the pixel colors
accordingly. Based on our wearable app study, the main
use of textures is as the app background. Such a texture
is often hundreds of KB and cannot be held in a mobile
GPU’s texture cache which is often a few KBs [2]. As a re-
sult, the texture access is streaming and most texture data
have to be fetched from the DRAM [3]. Note this may not
significantly harm the GPU performance much: the DRAM
latency is hidden by massive parallelism and various opti-
mizations such as batch fetch. Yet, the resultant excessive
memory move leads to an efficiency loss.

Pizel operations (€): The GPU produces a rendered sur-
face by writing the final pixels back to the DRAM. To do so,
it may need to first read in the pixels before writing them
back, e.g. for implementing the z-order among multiple ob-
jects or a translucent effect.

To estimate resource waste, we make the following sim-
ple, conservative assumptions: for each frame, the GPU
renders at least one surface, i.e. the one belonging to the
on-screen app, and thus accesses the background texture
that is uncompressed; in pixel operations, it writes one ren-
dered surface exactly once. Using the notations defined in
Figure b)7 the wasted memory traffic is:

2.8 f-p=2-400KB - 60FPS - 21.5% = 10M Bps

Graphic buffers. The wasted graphics buffer capacity is
low. The memory cost comes from two parts: the texture
buffers and the rendered surfaces for individual apps. Note
that each surface is often double- or triple-buffered; that is,
each buffer has two to three copies.

By examining the debugging information of SurfaceFlinger,

the system daemon managing all surface buffers, we found
the whole system often sees ten surface buffers, occupying
about 4MB memory. As a result, the oracle solution can
save at most 21%, or around 1MB, memory. This is less
than 1% of the total device DRAM (512MB). We expect
that the saving from the texture buffers is even lower.

3.3 Composition and Display

As shown in Figure [2] SurfaceFlinger sends multiple ren-
dered surfaces to the display controller, which in turn com-
posites the surfaces and directly sends the final image to
the display panel over a display interface. Note that this
eliminates the legacy notion of “framebuffer”. These actions
matter to energy efficiency: LPD [7] shows that on a simi-
lar wearable device (Samsung Gear S), the memory access
and data move consume up to 14 mW or 8% of the system
power.

Composition. Based on our experiment with Surface-
Flingers when running various apps, it almost always com-
posites two surfaces: one from the on-screen app and one
OS surface, i.e. a black circle around the display’s edge for
anti-aliasing effect. As compared to smartphone, a watch
has no system bar, no action bar, etc. Both surfaces are
rectangular, in the same size of the circumscribed square.
As a result, using the notations defined in Figure b), the
excessive memory traffic flowing into display controller (e)
is given by:

2-S-f-p=2-400KB-60FPS -21.5% = 10M B/sec

Beyond the memory move overhead, we estimate that the
compute demand by composition is low: the overlay engine
has been specialized for bit manipulation, and the number
of overlays is as small as two. Hence, the oracle solution can
save little processing in composition.

Display interface traffic. Each second, the display con-
troller sends 60 frames to the display panel (6) Each pixel,
on the interface, is still represented by four bytes. Thus, the
wasted interface traffic is:

S-f-p=400KB-60FPS -21.5% = 5MB/sec

Display panel’s internal SRAM. Modern display pan-
els often use command mode [7], which holds the pixels be-
ing displayed in an internal SRAM . Although the display
panel’s specification (presents an illusionary, 320 x 320
pixel array that takes 400 KB, it is unclear to us how its
internal SRAM is organized. Ideally, it should only store
pixels that will be visible on the circular display (292 KB).

4. HOW SHOULD SOFTWARE ADAPT?

Design space exploration. To reduce the resource
waste, it is clear that the graphics stack should be made
aware of circular displays. This raises a top design question:
to which layer of the stack (shown in Figure[2)) should we in-
troduce the awareness? This design question involves a key
trade-off between the entailed resource saving and software
complexity.

At the very top of the stack, we may overhaul the frame-
work API and make the app code fully aware of the display
shape. In drawing their UI elements, apps explicitly confine
all UI hierarchies within the circular area; they trim their

2000 [Android | Improved
-20.4%
1600 —
b oA
£ 1200 7
()
2 800
N -22.1%
400 s
-7.2% -22.4%
0 =; (]] E- L
64x64 128x128 256x256 512x512

Background Texture Size
(a) Memory read per frame

[Android M Improved 11.8%
120 %

7
7,
+3.3% +4.1% 0.4%

0 L

64x64 128x128 256x256 512x512
Background Texture Size

x©
(e

Kilo Cycles

N
S

(b) Total number of cycles per frame

Figure 3: The measured GPU resource consumption in rendering the benchmark app. In each column, the

bottom part: the resource for rendering the background;

shapes and textures so that none overflows. This approach is
very similar to the oracle solution discussed in Section [3] It
almost eliminates the resource waste, but puts a high burden
on the app developers; even worse, wearable apps developed
in this fashion are not portable across devices with different
shapes of displays.

Going one layer lower, we may keep the apps oblivious but
make the Ul libraries aware. The apps still believe that they
lay their UI hierarchies on a square display; the Ul libraries
keep track of the intersections between a hierarchy and the
display boundary and therefore avoid producing display lists
that fall out of the boundary. This approach removes devel-
oper’s burden but complicates the UI libraries (which are
already complicated! [4]) by exposing the display shape to
them.

Going all the way down to the bottom layer, we may in-
troduce the awareness right before all rendered surfaces are
composited, making the display controller skip all out-of-
boundary regions in the surfaces. This approach is similar
to LPD [7]. It requires zero effort from the developers of
CPU and GPU programs, but only reduces waste at 9 and
O the cxcessive GPU-induced memory traffic (@) has al-
ready been wasted.

Pilot solution: OpenGL interposition. In the graphics
stack, we have observed that the OpenGL interface is ideal
for bringing the display shape awareness: on one hand, its
abstraction is low enough for granting us great control of the
rendering action; on the other hand, it is still atop the GPU
where the major waste occurs. To this end, we advocate
for interposing the OpenGL commands and GPU shader
programs before they are sent to the GPU driver. We keep
the rest of the graphics stack oblivious and unchanged.

Shader program rewriting. We next showcase that
a simple rewrite action of a shader program can effectively
reduce GPU’s memory traffic. The idea is simple: we manu-
ally rewrite the GPU fragment shader so that it checks each
fragment’s coordinates before coloring it; if a fragment falls
out of the circular display area, the shader skips coloring it.

To evaluate the benefit of shader rewriting, we build a
small benchmark app for the test wearable device; the app
invokes the OpenGL API and employs GPU shaders to draw
its pictorial background. We vary the size of the back-
ground’s texture during benchmarking. Following the idea
above, we manually rewrite its fragment shader and pro-

the top part: that for all the remaining UI elements

file the GPU resource usage with and without the rewrite.
The profiling, however, faces a platform limitation: Qual-
comm’s GPU profiler only works with handheld devices but
not wearables at the time of writing (Oct. 2015). As a
workaround, we use Nexus 5 — a Qualcomm-powered smart-
phone — as an emulation platform: we compile the bench-
mark wearable app for Nexus 5 while keeping its source code,
UI structure, and UI dimension exactly identical. Note that
we do emulation on real hardware instead of simulation.
Nexus 5 and Watch R both feature Qualcomm’s Adreno
GPUs from the same generation (28 nm) and only differ
in the amount of physical compute resources.

As shown in Figure a), our profiling results show that
the rewritten shader reduces the memory read by up to
22.4%. This reduction and the resultant efficiency gain are
notable: i) memory read is in general known as the major
efficiency bottleneck in mobile graphics [2]; i7) the energy
efficiency of a wearable device is known to be sensitive to
memory traffic [7]; i) the efficiency benefit applies to ev-
ery produced frame, even when the Ul is not updated by
the app and remains still; 4v) the gain is achieved through
very low engineering effort, which is in contrast to far more
sophisticated techniques, e.g., texture compression, towards
the same goal.

The execution overhead introduced by the rewritten shader
is low, as shown in Figure b). With small to medium back-
ground textures (<128x128), the coordinates check inserted
in the shader increases the total GPU cycles by less than 5%;
with larger textures, the performance benefit from memory
read reduction overshadows the execution overhead, leading
to an up to 12% reduction in GPU cycles.

Expected Power Saving. We estimate that the pilot so-
lution can save non-trivial power by comparing it with prior
wearable study: LPD [7] saves 2.7 mW of system power by
reducing the DRAM-to-display traffic by 7 MBps; assuming
that the saved power is roughly proportional to the reduced
traffic, our reduced DRAM traffic (@€)) will lead to 3.9
mW of system power reduction. It is worth noting that
1) such an amount of power matters as wearable battery is
tiny; i) further power saving of 5.8 mW may be harvested
by novel display controller_ hardware that avoids the traf-
fic waste shown in Table [2| (@)@); iii) our power saving
is orthogonal to LPD [7], which avoids refreshing a display
region that is not re-drawn.

S. RELATED WORK

Wearables are less understood as compared to smartphones.
Our own work [10] has characterized its major system as-
pects such as power and CPU usage; Min et al. [13] stud-
ies the battery usage of smart watches. However, none has
studied the unique aspects of a wearable’s display.

Much work has characterized mobile GPUs. For example,
GraalBench [1] is a 3D benchmark suite for low-end phones
and Ma et al. |11] has characterized the power consumption
of mobile games. While their methods are inspiring, none
has studied non-rectangular displays nor has examined the
hardware-accelerated wearable UI.

Minimizing waste of mobile GPU resources has been a hot
topic. LPD [7] reduces the memory and display interface
traffic by only compositing the recently changed UI regions.
Android comes with various tools to bust GPU overdraw
problems [6]. DRS [8] reduces the GPU compute demand
by scaling down the display resolution on-demand. Our goal
is orthogonal to them: we aim to avoid producing Ul regions
that will be hidden by circular displays.

Memory access by mobile GPU, in particular texture mem-

ory, is a known bottleneck. Targeting power efficiency, PFR 3]

improves the texture access locality by rendering two adja-
cent frames in parallel. While we share the goal of efficiency
in GPU memory access, our approach avoids unnecessary
texture memory access altogether.

6. CONCLUDING REMARKS

Limitations. Our work does not provide solution for all
the discovered issues. The proposed shader rewrite tech-
nique does not reduce the identified resource waste in com-
position and display. To address this issue, hardware sup-
port from the display controller and panel is needed.

Our study is also limited by multiple factors. First, the
immature profiling support for wearable GPU forces us to
use a smartphone for emulation. The resultant measure-
ment, while shedding lights, does not directly map to that
of a wearable GPU. For instance, we have observed that the
wearable GPU often causes long system-level delay, up to
hundreds of ms, as the user is navigating among UI sur-
faces. While this implies optimization opportunity, lack-
ing profiling support, we are unable to examine what the
GPU is busy with. Second, multiple popular wearable apps
crash while they are being debugged or profiled, hindering
a better understanding of their internals. These even in-
clude Google’s official apps and official profiler. Third, the
fine-grained power model of wearables is not yet well-known,
making it hard to estimate the efficiency gain in actual use.
With more efforts invested by industry and academia, we
expect these limitations to disappear.

High-resolution, non-rectangular display. Our study
addresses the smart watch display, on which the number of
pixels is small, 20 — 40 x smaller than that of a typical smart-
phone display. Down the road, as displays in various form
factors become pervasive, we may see larger non-rectangular
displays with massive pixels, e.g., a “smart” oval mirror. The
implications are two: based on the discussion in Section
the resource waste is likely higher, making it more com-
pelling to adapt the graphics stack; addressing the waste

may warrant an introduction of the complexity to higher
layers in the graphics stack, e.g., redesigning the API.

Conclusions. Our work is a first look at the implica-
tion of circular displays on system software design. We have
discovered that the existing graphics stack is wasting sub-
stantial resources for contents that will never been shown
due to the screen shape. To this end, we have quantified the
resource waste on the LG watch R. We advocate for inter-
posing the OpenGL commands and GPU shaders to adjust
rendering activities to the display boundary. By demon-
strating a benchmark app, we have shown that this approach
is promising.

Acknowledgement

This work was supported in part by NSF Award #1464357.
The authors thank the anonymous reviewers for their use-
ful feedbacks. The photo in Figure a) is in CCO public
domain, and is by courtesy of Pixabay.

7. REFERENCES

(1] I. Antochi, B. Juurlink, S. Vassiliadis, and P. Liuha.
Graalbench: A 3d graphics benchmark suite for mobile
phones. In Proceedings of the 2004 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems, 2004.

[2] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Boosting
mobile gpu performance with a decoupled access/execute
fragment processor. In Proceedings of the 39th Annual
International Symposium on Computer Architecture, 2012.

(3] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis. Parallel
frame rendering: Trading responsiveness for energy on a
mobile gpu. In Proceedings of the 22nd international
conference on Parallel architectures and compilation
techniques, 2013.

[4] Google. Android graphics: System-level architecture. https:
/ /source.android.com/devices/graphics/architecture.html,
2014.

[5] Google. Android wear — defining layouts, 2015.

6] R. Guy. Android performance case study, 2012.

[7] M. Ham, I. Dae, and C. Choi. Lpd: low power display
mechanism for mobile and wearable devices. In Proceedings
of the 2015 USENIX Conference on Useniz Annual
Technical Conference, 2015.

[8] S. He, Y. Liu, and H. Zhou. Optimizing smartphone power
consumption through dynamic resolution scaling. In Proc.
ACM MobiCom, 2015.

[9] LG USA. Design comes full circle.
http://www.lg.com/us/smart-watches/lg- W110-g-watch-r|
2014.

[10] R. Liu, L. Jiang, N. Jiang, and F. X. Lin. Anatomizing
system activities on interactive wearable devices. In
Proceedings of the 6th Asia-Pacific Workshop on Systems,
2015.

[11] X. Ma, Z. Deng, M. Dong, and L. Zhong. Characterizing
the performance and power consumption of 3d mobile
games. Computer, 46(4):76-82, 2013.

[12] J. D. McCalpin. Memory bandwidth and machine balance
in current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19-25, Dec. 1995.

[13] C. Min, S. Kang, C. Yoo, J. Cha, S. Choi, Y. Oh, and
J. Song. Exploring current practices for battery use and
management of smartwatches. In Proceedings of the 2015
ACM International Symposium on Wearable Computers,
2015.

https://source.android.com/devices/graphics/architecture.html
https://source.android.com/devices/graphics/architecture.html
http://www.lg.com/us/smart-watches/lg-W110-g-watch-r

	Introduction
	Background & Motivation
	How many resources are wasted?
	Drawing
	Rendering
	Composition and Display

	How Should Software Adapt?
	Related Work
	Concluding Remarks
	References

