
Decelerating Suspend and Resume in Operating Systems

Shuang Zhai, Liwei Guo, Xiangyu Li, and Felix Xiaozhu Lin
Purdue ECE

ABSTRACT
Short-lived tasks have a large impact on mobile computer’s
battery life. In executing such tasks, the whole system
transitions in and out of the deep sleep mode. This sus-
pend/resume procedure is controlled by the operating sys-
tem (OS), which consumes a dominating portion of energy.
Through characterizing the Linux kernel on a variety of
modern system-on-chips (SoCs), we show that the OS sus-
pend/resume mechanism is fundamentally slowed down by
various IO devices, which frequently keep CPU waiting.

To minimize energy consumption, we advocate offloading
the OS suspend/resume to a miniature processor that waits
more efficiently. To this end, we propose a new virtual ex-
ecutor that runs on a miniature core and directly executes
the unmodified kernel binary of the main CPU. We con-
struct the virtual executor centering on software-only, cross-
ISA binary translation, an approach previously considered
prohibitively expensive. Through novel designs and opti-
mizations, we reduce the translation overhead by 5×. The
preliminary benchmarks show promising energy efficiency.

CCS Concepts
•Software and its engineering → Operating systems;

1. INTRODUCTION
Today’s mobile and wearable computers see a large num-

ber of intermittent, short-lived tasks such as push notifi-
cation [3], email sync [21], and “always-on” UI [7]. The
short-lived tasks, as shown in recent work, drain a large
portion of battery, e.g. 29% on smartphones [3]. To execute
a short-lived task, the whole system exits from a deep-sleep
state, runs user code, and re-enters the deep-sleep state. The
power state transitions are performed by suspend/resume, a
core power management (PM) function in OS.

Ironically, despite critical to system energy efficiency, the
suspend/resume procedure itself is expensive. In running
a short-lived task, suspend/resume often dominates the en-
ergy consumption, sometimes incurring 10× higher energy
than the task’s user code execution [5] . Most of the energy
is consumed by CPU, since short-lived tasks are often driven
by background activities and are executed with screen off.

To pinpoint the bottlenecks, we profile the Linux sus-
pend/resume on a variety of mobile SoCs. Our findings in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’17, February 21-22, 2017, Sonoma, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4907-9/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3032970.3032975

dicate that suspend/resume is fundamentally slowed down
by IO: the CPU spends much of its time waiting (being not
only idle but also busy) for hundreds of IO devices to com-
plete their power state transitions. Unfortunately, shorten-
ing such transitions is difficult: the transition delay is often
bound by physical factors or interface standards; the slow
IO devices are diverse and platform-dependent; transitions
of multiple IO devices can hardly be parallelized.

The profiling suggests that suspend/resume poorly fits to-
day’s high-frequency, complex processors that are intended
for rich mobile applications. Instead, the OS suspend/re-
sume should be offloaded to miniature, low-power processors
which we dubbed “PM cores”. This goal, however, is chal-
lenged by the high complexity of the OS suspend/resume
code, the PM core’s instruction set architecture (ISA), and
the demand for remaining compatible with commodity OSes.

To this end, we present a novel virtual executor: running
on a PM core, it completely takes charge of suspend/resume
by directly executing the main CPU’s unmodified kernel bi-
nary. This greatly reduces energy cost by keeping the main
CPU powered off for OS suspend/resume.

To fit a weak PM core, our virtual executor is purely
software-based, an approach previously believed too expen-
sive. To make it practical, we specialize the virtual executor
for the kernel suspend/resume path, rather than supporting
generic kernel code. The virtual executor consists of two
key components: a translator that dynamically translates
the main CPU’s kernel binary and executes it; a function
pruner that replaces generic, expensive OS functions with
specialized, simplified versions.

Of the two components, the binary translator’s overhead
is critical to the entire system’s efficiency – its software-
based cross-ISA translation, according to conventional wis-
dom, incurs prohibitive overhead. To tackle this problem,
our insight is to exploit the similarity between heterogeneous
ISAs, which are commonly seen among co-located modern
processors, as exemplified by the ARM A-series and M-series
cores. Through a set of key optimizations, we reduce the
translation overhead by 5× as compared to the state of the
art. Based on the measured power and overhead, we esti-
mate to reduce the total energy cost of suspend/resume by
up to 80% and extend the battery life by 30%.

We have made the following contributions:

• We quantify the Linux suspend/resume procedure on a
variety of SoCs and examine the causes of high energy con-
sumption and long delay;

• We offload the OS suspend/resume to an extremely low-
power core, which runs a novel virtual executor for executing
the unmodified kernel binary with low overhead;

• We describe a first-of-its-kind working prototype of the
virtual executor; at the time of writing, the prototype con-
tains 50.5K SLoC, of which 4.5K are new1. The preliminary

1Generated using David A. Wheeler’s ‘SLOCCount’.

http://dx.doi.org/10.1145/3032970.3032975

results show great promise.

2. BACKGROUND & MOTIVATION
System suspend/resume Suspend/resume is a core func-
tionaltiy of OS power management (PM). In a nutshell, a
suspend procedure is often initiated by userspace. The OS
synchronizes file systems, freezes all user processes, turns off
individual IO devices, and finally powers off CPU cores. Re-
sume is a mirror procedure. Suspend/resume is complicated
and platform-specific; kernel invokes various subsystems in-
cluding those managing clocks, buses, power regulators, and
IO devices. The procedure happens in multiple iterations,
each taking multiple sequential stages.

As a rough estimation based on Linux 4.4, the suspend/re-
sume execution involves more than 30K SLoC: 10K in the
framework itself, 10K in clock, 10K in platform PM code,
and several thousand lines scattered in ∼100 device drivers
that are rapidly evolving.

OS must be responsible Suspend/resume has heavy
functional dependency on the OS infrastructure. First, the
procedure relies on the OS knowledge, e.g., to properly save/re-
store the IO device state. Second, it invokes other OS ser-
vices through a wide, internal interface. For instance, sus-
pend/resume may request memory pages from the kernel
page allocator or schedule a tasklet to be executed in the fu-
ture. As a result, the suspend/resume code is tightly woven
into the whole kernel source.

PM “co-processor” A great portion of low-level PM func-
tionalities, e.g. clock management, used to be implemented
in hardware. As modern PM becomes increasingly complex,
there has been a trend moving them to software atop a ded-
icated PM co-processor. Examples include the wkup core in
TI AM335x [18] and the power management controller in
NVIDIA Tegra [12].

Existing PM co-processors, however, cannot fulfil the OS’s
role of performing suspend/resume. As mentioned above,
suspend/resume heavily depends on the OS knowledge and
services, which are unavailable to the co-processors.

Heterogeneous and incoherent cores In pursuit of en-
ergy proportionality, modern SoCs often embrace hetero-
geneous cores. For programming ease, ARM big.LITTLE
enforces same ISA and coherent caches across these cores,
which, however, limits the core heterogeneity. After remov-
ing a unified ISA and hardware cache coherence [16, 17,
13], the hardware vendor has great flexibility in incorporat-
ing disparate cores aggressively optimized for different ob-
jectives, e.g., performance or efficiency. To harness the re-
sultant architecture for general-purpose programming, prior
work proposed novel OS structures [11, 6, 1]. Much work
focused on providing a convenient single system image, how-
ever at the cost of engineering and compatiblity difficulty.
We will discuss them in Section 4.

3. A CASE FOR OFFLOADING
We next show why it is compelling to “decelerate” sus-

pend/resume by executing it on a less performant yet much
more efficient processor. To do so, we present our char-
acterization of the current suspend/resume on a variety of
SoCs from major vendors, as listed in Figure 1. For each
platform, we study the latest vendor-released Linux kernel
which is often thoroughly tuned and has production quality.

3.1 Energy “hotspots” in short-lived tasks
A short-lived task in modern mobile systems often lasts

from hundreds of ms [7, 5] to a few seconds [21]. Of the total
energy consumed, the OS suspend/resume constitutes a sig-
nificant, sometimes dominating, portion, up to 90% [5]. The
combined delay of suspend/resume is also long: as shown in
Figure 1, it ranges from a few hundred ms to nearly one sec.

Fortunately, in most scenarios, the delay in suspend/re-
sume does not directly affect user experience: as prior work
discovered [3], most short-lived tasks are initiated by back-
ground activities when user is not paying attention; even
when the user initiates a short-lived task (e.g. checking the
smartwatch face), she may only perceive the resume delay
but not the suspend delay.

Implication For common suspend/resume scenarios where
user experience is unaffected, minimizing energy consump-
tion is the primary concern; performance may be traded for
lower energy.

3.2 IO power state transition is slow
A defining feature of the suspend/resume path is that

CPU waits – being either idle or busy – for a large number
of IO devices to finish their power state transitions. Because
of the IO wait, the suspend/resume bogs down, as shown in
Figure 1. It is worth noting that the wait happens in nu-
merous small episodes; across all platforms, hundreds of IO
devices (of which Figure 1 only itemizes top ones) contribute
to the delay.

These transitions are fundamentally slow, bound by slow
peripherals (e.g. flash storage), low-speed interconnects (e.g.
I2C), wimpy microcontrollers embedded in the IO devices, or
physical factors (e.g. voltage ramp up). This is exemplified
by the following cases that we have manually discovered.

• MMC host. MMC host implements hardware protocols
for interacting with storage devices such as eMMC. In pow-
ering on/off the storage devices, CPU waits as mandated by
the MMC protocol. For example, when the host commands
eMMC to sleep, the latter often needs extra time to ensure
data become persistent; the kernel must wait synchronously
for either a completion notification or timeout.

• Display controller (MDSS). Before powering off the dis-
play controller, the kernel must ensure no image frame is
being transmitted to the display panel in order to avoid per-
sistent visual artifacts. In order to do so, the kernel must
wait for the completion of the current frame transmission,
which often takes tens of ms.

• SD card. To resume an SD card, the kernel switches on
the voltage supply and waits for the voltage to ramp up and
stabilize – before any further operations can be done to the
card. The voltage ramp-up may take up to tens of ms.

• Battery fuel gauge. Prior to powering off the gauge, the
kernel needs to retrieve the last temperature and current
readings over I2C. The gauge, likely due to its low-power
nature, often takes tens of ms to respond. When the system
runs normally, the sensors are read in the background and
the latency is hidden; however, suspend/resume requires the
reading to happen synchronously, exposing the latency.

Slow IO devices are diverse As reflected in our mea-
surement, multiple IO device are slowing down the entire
procedure. For each SoC, there exist a couple of dominating
IO devices, and the remaining (hundreds of) devices form a

* besides idle, the percentages of substantial CPU
busy wait are shown in bracket []

0%

20%

40%

60%

80%

100%

Nexus 5 Gear Note 4 Panda

119 ms
75%

191 ms
76%

231 ms
28%*
[49%]

262 ms
55%

72%
49%

53%

96%

62%
1%

mmc
host

serial
hsl

mmc
host

mdss

0%
30%
84%

89%

55%
0%

pcieh
dw

mm
c2

0%
28%

0%*
[100%]

50%

19%

39%

93%

4%

0%
0%

30%

26%

usb

mmc
clk

0%

20%

40%

60%

80%

100%

Nexus5 Gear Note4 Panda

mmc
host

msm
sdcc

80%*
[95%]

56%

1%

17%
0%

0%

72%

80%

0%

0%

0%*
[99%]

90%

90%

33%
0%
0%

96%

93%

0%

0%*
[21%]

36%

88 ms
62%*
[73%]

159 ms
43%

316 ms
56%*
[84%]

492 ms
75%

dw
mmc2

dw
mmc0

pcie

mmc
host

ssp
spi

mmc
host

mmc
blk Machine SoC Vendor Kernel User

Nexus 5
MSM
8974

Qualcomm 3.4
Android
5.1.1

Gear Live
APQ
8026

Qualcomm 3.10
Android
Wear

Note 4
Exynos
5433

Samsung 3.10
Android
5.1.1

PandaBoard
OMAP
4460

TI 4.4 Debian 8

IO: others

IO: top devices

Others thaw tasks

freeze tasks sync fs

(a) Suspend (b) Resume

Platforms used in the characterization

Figure 1: A characterization of suspend/resume delays, normalized to 100%. The absolute delays and the percentage of the
time when all CPU cores are idle are on top. For each component, the idle percentage is shown to its right.

 Busy @ 1200MHz Busy @ 350MHz Idle
Cortex-A9 672 79.8 25.2
 Busy @ 200MHz Busy @ 58.3MHz Idle
Cortex-M3 21.1 2.5* 3.8

Both cores consume less than 0.1 mW when inactive.
Table 1: Power of the heterogeneous cores on OMAP4, in
mW. All numbers are measured except that the one with
(*) is estimated based on the power scaling ratio of A9.

long tail. Across SoCs, the IO devices that contribute most
delays are not the same. In short, there is no silver bullet
for addressing slow IO power state transition.

Asynchronous PM is not panacea One may consider
overlapping the power state transitions of multiple IO de-
vices. The major hurdle, however, is the implicit hardware
dependency among IO devices, which requires certain tran-
sitions to happen sequentially.

Because of this, the Linux kernel community has been very
conservative after a long debate [9, 8]. So far, asynchrony
exists mostly among same-type devices, e.g. multiple SATA
drives, for which a single driver has sufficient knowledge
to orchestrate asynchronous PM. Such “intra-driver” asyn-
chrony, however, is less useful to an IO-rich or accelerator-
rich system which can have hundreds of different devices.

Implication The suspend/resume procedure is slow be-
cause CPU has to wait for various IO. Since the lengths of
IO wait are indifferent to CPU performance, a simpler, less-
performant core will consume much less energy due to its
lower idle and active power. See Table 1 for quantitative
evidence.

3.3 Kernel execution favors weak cores
Beyond IO wait periods, it has been known that kernel

execution is more energy efficient on simpler and weaker
cores [10]. This is because the kernel’s unique characteris-
tics, such as small code working set, less predictable con-
trol flow, and frequent IO register access, can hardly benefit
from advanced, energy-hungry microarchitectures. Our ker-
nel microbenchmark partially confirms this argument: in ex-
ecuting a CPU-intensive benchmark on a big core (Cortex-
A9) and a weak core (Cortex-M3), their respective cycle
counts often differ by less than 2× while their energy con-

sumptions differ by more than 5×.

Implication In the suspend/resume procedure, the kernel
execution outside of IO wait periods is likely to gain energy
efficiency from weak cores. To us, the gained efficiency can
be used as headroom to enable virtual execution that bridges
heterogeneous ISAs, as will be discussed below.

4. DESIGN OVERVIEW
We have shown that suspend/resume is an energy-critical

procedure where weak cores naturally fit – in both idling and
busy execution. Taking this insight to its extreme, we ad-
vocate removing the main CPU from the kernel suspend/re-
sume path, and offloading the procedure to a miniature pro-
cessor which we dubbed “PM core”.

PM core Conceptually, the PM core should be i) aggres-
sively optimized for energy and ii) loosely coupled with the
main CPU. We thus impose minimum hardware require-
ments: the PM core should reside on the same platform
as the CPU and share access to DRAM and IO devices; its
ISA should be similar, but does not have to be identical, to
the main CPU. Other than that, the PM core may have no
MMU or cache that is coherent with the main CPU.

Such minimum requirements qualify many existing low-
power processors, such as ARM Cortex-M and Intel Quark.
Their power-optimized ISAs are similar, although not iden-
tical, to their performance-optimized counterparts, such as
ARM Cortex-A and Intel i7. They are already conveniently
incorporated in commodity hardware platforms [16, 17, 13].

Challenges & Opportunities The above goal raises a
great deal of challenges, including i) ISA heterogeneity, ii)
the complexity of kernel’s suspend/resume code, and iii)
that the kernel itself is rapidly evolving and may easily ob-
solete our engineering effort. No prior system has addressed
these challenges altogether, to the best of our knowledge.

On the bright side, we set to exploit two key opportuni-
ties. First, we leverage the aforementioned ISA similarity
to reduce execution overhead. Second, we will specialize
our system for supporting suspend/resume, rather than ar-
bitrary kernel code. For example, since the main CPU and
PM core are never intended to run concurrently and they
each flush own caches when offloading starts and ends, we

(a) A multikernel OS
(prior art)

(b) Offloading suspend/resume
via virtualization (this work)

CPU PM core

Virtual
Execution

Suspend
Resume

DRAM IO

Kernel

Core A Core B

DRAM IO

Kernel A Kernel B

Single System Image

Figure 2: A comparison of two alternative OS structures for
harnessing heterogeneous, incoherent cores

can avoid software cache coherence between the cores. We
will present more details in Section 5.

4.1 Design choice exploration
Manual code partitioning is infeasible To enable sus-
pend/resume offloading, one may be tempted to manually
“carve out” suspend/resume code from an existing kernel.
This is difficult, if not infeasible: first, there is no clear
boundary around the suspend/resume logic: it shares ex-
tensive state with the rest of the kernel; second, much of the
suspend/resume code is also executed in other kernel con-
texts, e.g. runtime power management [20] or user-initiated
resume, which are not suitable for offloading.

A multikernel OS breaks compatibility Targeting span-
ning one OS over heterogeneous processors, prior work [6, 1,
11] advocated running multiple kernels – one for each core
type – under a single system image, as shown in Figure 2(a).
While the resultant OS eases user-level programming, it re-
quires deep customization of kernel structures and thus gives
up compatibility with commodity OSes.

In such a multikernel OS, kernel instances coordinate by
either message passing or shared memory. Both suffer from
compatibility difficulty. While message passing significantly
departs from commodity OS designs, the shared-memory
structure too requires tedious and repetitive efforts: ker-
nel images for different core types must be built from a
common source tree; across the resultant images, any given
memory object must be placed at the same virtual address.
This requires manual tweaks of kernel configurations, linker
commands, and the internal memory layout of various data
structures. What is worse, such efforts have to be repeated
for each release of a commodity OS.

4.2 A specialized virtual executor
Different from the aforementioned choices, we take a rad-

ical design point: using the PM core to execute the main
CPU’s unmodified kernel binary, as shown in Figure 2(b).
For idling, this new design enjoys the low idle power of PM
core; for busy execution, this design uses the PM core’s su-
perior efficiency to offset the overhead of virtualization, and
in return gains compatibility with commodity kernels.

The virtual executor consists of two key components.

Dynamic binary translator To bridge the heterogeneity
gap, we retrofit the technique of dynamic binary translation.
In a nutshell, the dynamic binary translator reads in the ker-
nel code (in the main CPU’s ISA), converts it to blocks of in-
structions in the PM core’s ISA (called“translation blocks”),

and executes the translation blocks on-the-fly. For efficiency,
the translator caches recent translation blocks.

Minimizing the translation overhead is critical to our sys-
tem; we will discuss our key optimizations in Section 5.

Kernel function pruner As the virtual executor trans-
lates unmodified kernel binary, it judiciously prunes the ex-
ecution of kernel functions that i) can be greatly simplified
for the purpose of suspend/resume and ii) have stable kernel
API which is not likely to change in future versions. For ex-
ample, since suspend/resume is mostly single-threaded, the
virtual executor can redirect invocations of the CPU sched-
uler to a minimalist implementation.

Our kernel function pruner is reminiscent of the concept of
para-virtualization. Overall, we slightly increase the virtual
executor’s dependency on the kernel; in return, the virtual
executor is able to exploit the extra knowledge about kernel
internals for higher execution efficiency.

How much kernel source will be modified? Our de-
sign requires a one-time, minor change to the kernel: change
the order between the power state transition of the main
CPU itself and the rest of the suspend/resume procedure.
With the change, as soon as suspend is initiated, the ker-
nel turns off CPU and shifts the remaining responsibility to
the PM core; in resume, the CPU remains off until all other
steps, such as powering IO devices, are completed.

5. BAREMETAL BINARY TRANSLATION
We will next focus on dynamic binary translator, the heart

of virtual executor. Compared to prior work [2, 4], our trans-
lator is novel on two aspects. First, it is the first working pro-
totype running on a simple core and translates binaries for a
much more complex core, which is enabled through painstak-
ing engineering efforts as will be discussed below. Second,
it exploits the similarity between heterogeneous ISAs to ag-
gressively reduce the execution overhead.

Test platform We choose our test platform to be the TI
OMAP4 [16] that features loosely coupled ARM Cortex-A9
and M3. Compared to other SoCs, the OMAP4 hardware is
well documented; it receives great support from the mainline
Linux at the time of writing. Other viable heterogeneous
SoC testbeds include the Freescale i.MX6 SoloX (Cortex-
A9 + M4) and the TI Sitara AM5728 (Cortex-A15 + M4).

Note that our design and optimizations below are not spe-
cific to OMAP4 but applicable to the ARMv7a and v7m
ISAs, which are widely used in today’s mobile systems.

5.1 Baseline design
On the Cortex-A9 of TI OMAP4, we run a recent mainline

Linux kernel (4.4), in which the suspend/resume function is
considered mature. In building virtual executor on Cortex-
M3, we retrofit the opensource QEMU [2] which provides a
complete framework for cross-ISA binary translation.

Restructuring QEMU. To fit the weak M3 core, we have
refactored the QEMU codebase that has over 2.6 million
SLoC. First, we have extracted its dynamic binary transla-
tion core and packaged it as a library. The refactoring cuts
the size of translator code by 87%, from 6.5 MB to around
800 KB.

Second, we have aggressively narrowed the interface be-
tween the translator and its underlying software. Ideally,
the translator should run baremetal on the PM core. Yet,
the original QEMU depends on a POSIX interface, which is

often made available through a full-grown OS. To fix this,
we reduced the interface to threading, timer, memory map-
ping, and heap management, which can be supported by a
mini runtime with a few simple libraries. For quickly pro-
totyping, we currently bring up uCLinux and uClibc (both
forked from the EmCraft release [15]) as the runtime. The
final image size of whole virtual executor is around 2MB.

A new translation target Intended for desktop or server,
QEMU lacks support for embedded ISA, e.g. ARMv7m for
Cortex-M3, as its translation targets or “backend”. Initially,
we intended to use QEMU’s architecture-independent IR in-
terpreter as the backend for M3. However, benchmarking
kernel functions (e.g. kallsyms_lookup_name) shows that
interpretation leads to more than a 100× slowdown as com-
pared to A9 native execution. To avoid such substantial
efficiency loss, we have built a new backend for ARMv7m
under the QEMU framework in around 3K SLoC. Our ini-
tial backend design incurs near 20× overhead, which is on a
par with other backends shipped with QEMU. This design
serves as the baseline of our optimizations below.

5.2 Key optimizations
We next sketch our optimizations that make cross-ISA

translation practical. Using the virtualization lingo, we refer
to the main CPU that runs the kernel natively as guest, and
the PM core that runs the translator as host.

Direct register mapping QEMU, aiming binary trans-
lation between arbitrary ISA pairs, features a generic in-
termediate representation (IR). The IR drops much of the
architecture-specific information.

Observing that ARMv7a and ARMv7m have the same
number of general-purpose CPU registers, our translator re-
duces register emulation cost by breaking the generic IR and
backs the guest registers with the same host registers. The
caveat, however, is that the translator must reserve at least
one host register for its own use, e.g. storing the pointer to
the emulated CPU state; any guest access to reserved regis-
ters must be emulated by memory operations, which is more
expensive. Thus, we carefully choose the reserved register
to be the least-used one in all kernel instructions; the usage
of this register is 8× lower than the most-used one.

Observing that the CPU status flags in the guest and the
host share the format, our translator directly passes through
flags to avoid emulation as necessitated by the QEMU IR.
The emulation is costly: one flag bit is backed by a dedicated
software variable; each guest instruction affecting CPU flags
is often translated into 10+ host instructions; this is exacer-
bated by the pervasive conditional executions and loops in
the kernel code.

Overall, register mapping reduces total overhead by∼24%.

Baremetal stacks The stock QEMU emulates the guest
stack: it stores a stack pointer register (SP) and manipulates
it in software, according to guest push/pop. Through profil-
ing, we notice this is expensive as the suspend/resume path
invokes numerous driver functions; each function is short,
but does push/pop often more than 10 times. Therefore,
our translator employs a dedicated guest stack that is di-
rectly operated by the host hardware SP. Upon entering the
translated code for execution, the translator switches to the
guest stack by replacing SP; upon exiting from the trans-
lated code, the translator switches back to its own stack.
This reduces the overhead by at least ∼4%.

(b) Estimated energy reduction for suspend/resume

0X 5X 10X 15X 20X

glob

kfifo

callback

Overhead

Native Translated (baseline) Translated (optimized)

Platform Nexus5 Gear Note4 Panda
Reduction% 67.1 47.9 79.2 48.6

(a) Measured execution overhead on M3 for kernel
benchmarks, normalized to the A9 native cycles

Figure 3: Benchmark results

Relaxed handling of interrupts and exceptions Since
suspend/resume does not handle latency-sensitive interrupts,
our translator reduces its rate of checking interrupts. In
stock QEMU, pending interrupts are checked upon entering
each translation block. In executing the branch-heavy ker-
nel code, this incurs extra 7 host instructions per 20 – 30
instructions. By checking interrupts every dozens of blocks,
our translator reduces the total overhead by ∼27%.

Our translator also maximizes the execution period within
the translated code by leveraging kernel invariants. In the
stock QEMU, a branch that goes across page boundary trig-
gers an exit from the translated code and a costly page
lookup, since the translator must check whether the des-
tination page is mapped or not. According to our profiling,
93% branches in kernel code are across pages. Observing
that the kernel memory is never paged out, our translator
continues executing translated code after following a cross-
page branch. This reduces the overhead by at least 25%.

Kernel virtual memory As mentioned before, we do not
assume that a weak PM core has an MMU that is coherent
with the main CPU. Therefore, the virtual executor needs to
emulate the kernel virtual memory in software. Conceptu-
ally, in translating each memory access the virtual executor
needs to walk the main CPU’s page table that resides in the
shared DRAM. We exploit a Linux kernel invariant: most
of the kernel memory is linearly mapped ; a virtual and its
corresponding physical address only differ by a constant off-
set. Therefore, for any access in the linear-mapping memory,
the translator simply does one bound check and one addi-
tion; only for translating temporary mappings, e.g., for IO
memory, the virtual executor walks the CPU’s page table.

5.3 Kernel microbenchmarks
We demonstrate the efficacy of our design through a set of

benchmarks, all excerpted from the real Linux kernel source:
glob is a compute-intensive routine that matches string pat-
terns, which is widely used, e.g., in kernel symbol lookup;
kfifo exercises the virtual executor by manipulating one of
the most common kernel data structures; callback mim-
ics the complex control flow of suspend/resume that invokes
numerous callback functions provided by drivers.

For each benchmark, we measure the cycles in executing
i) the native binary for A9, ii) the native binary for M3,
iii) our baseline translation on M3, and iv) our optimized
translation on M3. We define the execution overhead as the
measured cycles normalized to A9’s native execution cycles.

As shown in Figure 3(a), our optimizations use less than

5× cycles to finish the same benchmarks compared to base-
line. More importantly, our execution overhead is within 2×
of the M3 native execution overhead, which is the theoretical
lower bound for offloaded execution.

5.4 Benefit of energy efficiency
We estimate the total energy reduction as follows.

• Without offloading, the energy consumption is given by:
Ecpu = (Tbusy exec + Tbusy wait) · Pbusy + Tidle · Pidle

Here, P s are the power of main CPU and T s are the busy/i-
dle durations measured from profiling in Figure 1.

• With offloading, the energy consumption is given by:
Epm = X ·F ·Tbusy exec ·P ′

busy +Tbusy wait ·P ′
busy +Tidle ·P ′

idle

Here, T s are identical as above and P ′s are the power of PM
core. X · F captures the kernel execution slowdown due to
offloading: X is the execution overhead in cycle count ratio
as defined and measured in Section 5.3; F is the clock ratio
between the main CPU and the PM core.

To calculate the energy saving, i.e. (Ecpu − Epm)/Ecpu,
we plug in the measured power of OMAP4 listed in Table 1,
which was also used in our prior work [6]. Note that we
use the power measured at both cores’ full clockrates; if we
consider that both cores can exploit DVFS to run at their
lowest clock rates, our energy saving will be even higher.

As summarized in Figure 3(b), our system is able to re-
duce energy consumption in suspend/resume by up to 80%.
Given the significance of suspend/resume (§2), the reduc-
tion will substantially extend battery life: for example, in
the background sensing scenario evaluated in prior work [5],
our system will extend the battery life by up to 30%.

6. RELATED WORK
Suspend/resume The significance of efficient suspend/re-
sume has been recognized for mobile devices [5]. Prior work
has already shown some evidences that IO devices are one
key bottleneck [5, 19]. Inspired by it, we present quanti-
tative results, and provide in-depth examination of individ-
ual IOs. Prior work also seeks to speed up suspend/resume
through reordering power operations [5, 19]; complementary
to it, our approach focuses on reducing the energy cost. Our
own work advocates automatic runtime IO power manage-
ment [20]; orthogonal to it, this work focuses on power man-
agement when the platform is turned on or off.

OS for heterogeneous processors To harness a set of
heterogeneous, incoherent cores, much work [1, 6, 11] pro-
poses per-core kernels under a single system image, at the
cost of compatibility with commodity OSes.

K2 [6] enables asymmetric CPUs to independently execute
the same OS. Popcorn [1] bridges heterogeneous CPUs by
running multiple message-passing OS kernels. GPUfs [14]
bring file abstraction to GPU code. Compared to it, we re-
duce the dependency among the software stacks on different
cores, offering better compatibility with commodity kernels.

Dynamic binary translation (DBT) DBT is a classic
technique widely proven useful [2, 4]. While prior work runs
DBT on powerful, full-fledged hosts, we are the first build-
ing DBT for a simple core that even lacks MMU. Recent
work applies DBT to whole OS kernels [4] and exploits ker-
nel invariants for performance, which inspires our proposal.
Compared to them, we use DBT to bridge heterogeneity gap
and optimize it for specific subsystem – suspend/resume.

7. CONCLUSIONS
Suspend/resume is seriously inefficient due to slow power

state transitions of IO devices. To address this problem,
we set to offload the OS execution of suspend/resume to a
weak, heterogeneous core. To this end, we propose a spe-
cialized virtual executor running on the weak core that di-
rectly executes the kernel binary. Through a novel design
and optimizations, we aggressively reduce the virtualization
overhead and therefore harvest energy efficiency and com-
patibility. A full implementation is in progress.

Acknowledgement The work was supported in part by
Purdue’s Summer Undergraduate Research Fellowship (SURF),
a Google faculty award, and NSF Award #1464357.

8. REFERENCES
[1] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,

A. Ravichandran, C. Kendir, A. Murray, and B. Ravindran.
Popcorn: Bridging the programmability gap in
heterogeneous-isa platforms. In Proceedings of the Tenth
European Conference on Computer Systems, 2015.

[2] F. Bellard. Qemu, a fast and portable dynamic translator. In
USENIX Annual Technical Conference, FREENIX Track,
2005.

[3] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone background activities in the wild:
Origin, energy drain, and optimization. In Proceedings of the
21st Annual International Conference on Mobile Computing
and Networking, 2015.

[4] P. Kedia and S. Bansal. Fast dynamic binary translation for the
kernel. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, 2013.

[5] M. Lentz, J. Litton, and B. Bhattacharjee. Drowsy power
management. In Proceedings of the 25th Symposium on
Operating Systems Principles, 2015.

[6] F. X. Lin, Z. Wang, and L. Zhong. K2: A mobile operating
system for heterogeneous coherence domains. In Proc. ACM
Int. Conf. Architectural Support for Programming Languages
& Operating Systems (ASPLOS), 2014.

[7] R. Liu and F. X. Lin. Understanding the characteristics of
android wear os. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications,
and Services, 2016.

[8] LKML. [git pull] pm updates for 2.6.33, 2009.

[9] LWN. Redesigning asynchronous suspend/resume.
https://lwn.net/Articles/366915/, 2009.

[10] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan, and
V. Talwar. Using asymmetric single-isa cmps to save energy on
operating systems. Micro, IEEE, 28(3):26–41, 2008.

[11] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and
G. Hunt. Helios: heterogeneous multiprocessing with satellite
kernels. In Proc. ACM Symp. Operating Systems Principles
(SOSP), 2009.

[12] NVIDIA. Tegra2 Family: Technical reference manual, 2011.

[13] Samsung. Exynos 4210 application processor.
http://www.samsung.com/global/business/semiconductor/
product/application/detail?productId=7644&iaId=844, 2012.

[14] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. Gpufs:
Integrating a file system with gpus. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2013.

[15] E. Systems. uclinux for cortex-m3 and cortex-m4.
https://github.com/EmcraftSystems/linux-emcraft, 2015.

[16] Texas Instruments. OMAP4 applications processor: Technical
reference manual. http://www.ti.com/product/OMAP4470,
2010.

[17] Texas Instruments. OMAP543x: Technical reference manual.
http://www.ti.com/litv/pdf/swpu249v, 2010.

[18] Texas Instruments. AM335x Sitara Processors: Technical
reference manual, 2015.

[19] S. L. Xi, M. Guevara, J. Nelson, P. Pensabene, and B. C. Lee.
Understanding the critical path in power state transition
latencies. In Proceedings of the 2013 International Symposium
on Low Power Electronics and Design, 2013.

[20] C. Xu, F. X. Lin, Y. Wang, and L. Zhong. Automated os-level
device power management for socs. In Proc. ACM Int. Conf.
Architectural Support for Programming Languages &
Operating Systems (ASPLOS), 2015.

[21] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang,
and Q. Li. Optimizing background email sync on smartphones.
In Proc. ACM Int. Conf. Mobile Systems, Applications, &
Services (MobiSys), 2013.

https://lwn.net/Articles/366915/
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7644&iaId=844
http://www.samsung.com/global/business/semiconductor/product/application/detail?productId=7644&iaId=844
https://github.com/EmcraftSystems/linux-emcraft
http://www.ti.com/product/OMAP4470
http://www.ti.com/litv/pdf/swpu249v

	Introduction
	Background & Motivation
	A case for offloading
	Energy ``hotspots'' in short-lived tasks
	IO power state transition is slow
	Kernel execution favors weak cores

	Design Overview
	Design choice exploration
	A specialized virtual executor

	Baremetal binary translation
	Baseline design
	Key optimizations
	Kernel microbenchmarks
	Benefit of energy efficiency

	Related Work
	Conclusions
	References

