
RhythmLink: Securely Pairing
I/O-Constrained Devices by Tapping

Felix Xiaozhu Lin
Department of Computer Science

Rice University
Houston, TX 77005 USA

xzl@rice.edu

Daniel Ashbrook, Sean White
Nokia Research Center

2400 Broadway
Santa Monica, CA 90404 USA

{daniel.ashbrook,sean.white}@nokia.com

ABSTRACT
We present RhythmLink, a system that improves the wire-
less pairing user experience. Users can link devices such as
phones and headsets together by tapping a known rhythm on
each device. In contrast to current solutions, RhythmLink
does not require user interaction with the host device dur-
ing the pairing process; and it only requires binary input on
the peripheral, making it appropriate for small devices with
minimal physical affordances. We describe the challenges in
enabling this user experience and our solution, an algorithm
that allows two devices to compare imprecisely-entered tap
sequences while maintaining the secrecy of those sequences.
We also discuss our prototype implementation of Rhythm-
Link and review the results of initial user tests.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces—Haptic I/O, Input Devices and
Strategies
General terms: Design, Human Factors, Security
Keywords: Device pairing, mobile devices, input, rhythm,
security, taps

INTRODUCTION
As technology shrinks, the user interface for mobile devices
is becoming the largest physical part of the device. Some in-
put devices now consist solely of sensors [13, 14] or physical
affordances [1]. As devices get smaller and cheaper, Weiser’s
vision of “‘scrap computers’. . . that can be grabbed and used
anywhere” [23] may extend to general input and output pe-
ripherals that can be connected on the fly to laptops, mobile
phones, watches, and other personal, mobile devices.

User interaction with such peripherals has been explored, but
a remaining challenge is the way in which these tiny, wire-
less devices are connected together or “paired”. Consider a
set of Bluetooth headphones: most have just a few buttons
and no visual interface at all. In order to connect the head-
phones to a phone, the user must follow a multi-step proce-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’11, October 16-19, 2011, Santa Barbara, CA, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

dure: retrieving the phone from wherever it is stored (pocket,
bag, or purse, for example), scanning for devices and select-
ing the headphones, typing in the headphone’s security code,
and placing the phone back into the pocket or bag.

While these steps are familiar to many users of wireless tech-
nology, research indicates that this pairing process is often
slow [10] and confusing [22]. Our research addresses the us-
ability of device pairing, while at the same time maintaining
security.

In this paper, we introduce our system “RhythmLink” which
improves on prior pairing methods. RhythmLink allows
users to securely pair a peripheral with a host device such
as a mobile phone via rhythmic taps, entirely bypasses the
usual discovery phase, needs just a single button or other bi-
nary input device to work, and does not even require the user
to be in physical possession of the intended host device.

RhythmLink Use Example
The following example illustrates the fundamental ideas of
our system. Alice has just purchased a new RhythmLink-
enabled phone. As part of the setup procedure, the phone
asks her to input a new pairing tap password. After consider-
ing for a moment, she taps out the rhythm of the chorus from
“Let It Be” by The Beatles.

A few weeks later, Alice is at a friend’s party. Her friend
has some new RhythmLink-enabled wireless speakers, and
invites Alice to play some tunes. She taps out “Let It Be” on
the pairing button on the back of one of the speakers. In just
a few seconds, the speakers have securely paired with Alice’s
phone—still sitting at the bottom of her purse—and started
to play her music.

Contributions
Our research makes two major contributions. First, Rhythm-
Link improves the usability of mobile device pairing, from
both a speed and a user experience standpoint. It does so by
a) removing the need to search for devices with which to pair;
and b) allowing pairing to be initiated and completed from
the peripheral, without having to hold, touch, or be physi-
cally near the phone.

Secondly, RhythmLink accomplishes the above while main-
taining the security of mobile device pairing. As we will
discuss, this is not a trivial problem: RhythmLink must com-
pare a tapped sequence with the stored tapped password on

mailto:xzl@rice.edu
mailto:daniel.ashbrook@nokia.com
mailto:sean.white@nokia.com

surrounding devices, but without any of the devices revealing
their tap data.

Design Challenges
For clarity, in the rest of this paper, we will use phone to
indicate the host device—whether it be phone, music player,
computer or television—and peripheral to identify the device
that is to be connected to the host. In the example above, we
would refer to the wireless speakers as the peripheral.

Because both usability and security are important features of
wireless pairing, we have identified the following as desider-
ata for an improved pairing procedure:

Security Undesired peripherals must not be able to be paired
without the phone owner’s knowledge or consent. Like-
wise, the peripheral should only be paired to the intended
phone.

Fast selection Selecting which of a number of peripherals
to pair with should be fast and natural.

Fast authentication Authentication—the user verifying that
indeed two devices should be paired—should be fast and
natural.

Variety of input mechanisms No particular kind of input
device such as keypads should be required: peripherals
come in all shapes and sizes, so the pairing process should
work with a wide variety of input mechanisms such as but-
tons or accelerometers.

Variety of output mechanisms Similarly, no particular kind
of rich output should be assumed for either peripherals or
phones.

Low power Some tiny devices may be very computationally-
and battery-constrained: pairing shouldn’t be slow or drain
too much power.

As we discuss in the rest of the paper, RhythmLink attempts
to fulfill each of these desiderata.

RELATED WORK
Wireless Pairing
In order to understand RhythmLink, it is helpful to have a
basic understanding of wireless pairing and how it works.
The essential goal of a pairing procedure is to establish trust
between two devices that have no pre-existing information
about each other. Because peripherals can expose private
data (e.g., a GPS receiver) or control the host device (e.g.,
a phone headset), it is important to verify that the two device
should really be connected. That is, the user should have
confidence that only her phone can connect to her GPS, and
that nobody else will be able to connect their headset to her
phone.

Because wireless devices must operate over untrusted chan-
nels, their communication is susceptible to compromise by
methods such as the man-in-the-middle (MITM) attack, dur-
ing which an attacker is inserted in between the two de-
vices, making them believe that they are securely communi-
cating, whereas in fact the attacker is relaying—and possibly
modifying—the messages.

In order to be secure against MITM attacks, the two devices

should have a shared secret: some information that they each
know, that is used to verify that the two devices are directly
communicating. It is vital that this shared secret is not given
away to anyone—that is, it is not sent over wireless either
in the clear (because a third party could find it out) or sent
encrypted to another device (because a MITM attack could
already be underway). The only way the shared secret can
work is if both devices independently know it.

The shared secret is often communicated between devices us-
ing out-of-band (OOB) information sent by a different chan-
nel than the primary wireless connection. Frequently, the
OOB channel is human-perceptible: when the communica-
tion can be directly perceived by the user, an attacker can-
not modify messages without being detected. Various OOB
channels have been explored. Bluetooth, for example, can
display a number on one device that is typed in on the other
device. In this case, the human is the OOB channel.

The next sections discuss various authentication and pairing
methodologies in more detail, and the advantages and draw-
backs of each.

Rhythm-Based Authentication
RhythmLink’s tap input is inspired by two rhythm-based ap-
proaches to authentication found in the literature. Westeyn
and Starner’s Prescott [24] uses song-based rhythmic eye-
blinking patterns to authenticate a user. The system detects
blinks using a camera and computer vision and compares
them to a database using dynamic time warping. Due to the
eye/camera line of sight, Prescott is intrinsically secure for
fixed installation (the authors give the example of a door at
an airport).

Wobbrock’s TapSongs [25] extends the rhythm-based con-
cept to any binary sensor such as a button. With a wired
connection between the sensor and the computer, TapSongs
compares the input rhythm to a database of taps using non-
dynamic linear warping.

By showing that rhythmic input through sensors such as but-
ton or cameras is a feasible method for entering password in-
formation, Prescott and TapSongs provide a way to minimize
the I/O requirements of peripheral devices. However, there
are two reasons that neither system is suitable for wireless
pairing. First, they both feature a database of stored pass-
words to which the candidate input is directly compared. Di-
rect comparisons are not desirable in a wireless pairing sce-
nario: until a trusted connection is established, neither party
will want to reveal their passwords. Secondly, in Prescott
and TapSongs, the system is trusted end-to-end: the input
(camera or button) is coupled to the database of rhythms, so
there is little possibility that someone will steal a password.
On the other hand, wireless connections are susceptible to
eavesdropping, so directly transmitting the blinked or tapped
password would be insecure; even cryptographic techniques
such as public key exchange still allow MITM attacks.

Bluetooth Pairing
The current state of the art for connecting wireless periph-
erals and hosts is Bluetooth, so any new pairing procedure

should improve upon its operation. From the user’s perspec-
tive, there are several steps to successfully completing pair-
ing with Bluetooth:

1. (Optional for some peripherals) The user sets the periph-
eral to “discoverable” mode.

2. On the phone, the user initiates the pairing process.

3. The phone searches for discoverable peripherals and dis-
plays a list; the user selects the desired peripheral.

4. The user completes one of several security procedures [11]
including: entering a Personal Identification Number (PIN),
possibly hardcoded to a default such as “0000”; comparing
a number on two displays; or using an out-of-band (OOB),
non-Bluetooth-based mechanism such as RFID to commu-
nicate security information.

5. The devices are paired and ready to use.

There are a number of usability issues with the Bluetooth
pairing process: discovery of available devices is often slow,
and the found devices can have similar (“iPhone”) or confus-
ing (“1USA24881”) names; both devices must be physically
available to the user to confirm the pairing procedure (except
with a special “just works” security protocol [11], which of-
fers no MITM protection); and there is little support for truly
secure pairing with I/O-constrained devices such as headsets.

Bluetooth’s security is not adaptable to rhythm-based in-
put. Bluetooth avoids revealing PINs by performing cryp-
tographic calculations on each bit of the PIN; only if the re-
sults exactly match on each end do both devices know that
they have matching codes. However, because of the variabil-
ity of human rhythm input, this technique cannot work for
RhythmLink: even a millisecond of difference between two
taps will yield very different calculations on the two devices.

Pairing Research

Some of Bluetooth’s usability issues with respect to pairing
have been addressed in prior research. For an overview of
many of these efforts, including evaluation of their usabil-
ity, see the work of Kumar et al. [10]. Similar to our work,
the aim of prior research is frequently to simplify pairing by
removing discovery and/or simplifying authentication.

Some such systems use the proximity of two devices as OOB
information [5, 12, 16, 20]; however, this approach requires
that the devices be able to get near to each other, which
prevents, for example, pairing a phone with a remote large-
screen display or pairing a headset with a phone in a bag
across the room.

Another solution is to use simultaneous input through shak-
ing the devices together [7, 12] or concurrent button presses
[15, 19] or gestures [4]. These solutions require proximity as
well—either to hold both devices in one hand, or to access
buttons on both devices at the same time. If one device is
too large to hold, is remote (e.g., the aforementioned large-
screen display), or is simply inaccessible in a bag or pocket,
these methods will not work.

Figure 1: The tune “Shave and a Haircut, Two Bits”. ˇ “
and represent one beat each, ˇ “

==̌ “== is a double beat,
and each > is a one-beat rest. The red lines represent
the taps input for the same tune by one user. The
numbers indicate the length of each interval between
tap starts, in milliseconds.

RHYTHMLINK
RhythmLink builds on Prescott [24] and TapSongs [25] by
using rhythm-based passwords for authentication. The idea
is simple: the user starts by entering a tapped password—
or “tapword” (a representation distinct from the TapSongs
method in terms of model and comparison algorithm)—on
the phone. This tapword is defined once per phone (or other
host device) and does not need to be changed unless the user
desires. When the user wants to connect a peripheral to the
phone, she taps out the same tapword on the peripheral. The
peripheral then—without revealing the tapword—queries all
of the phones in the vicinity to see if any possess a similar
tapword. If one does, that phone pairs with the peripheral.

RhythmLink uses tap-based input in order to require a min-
imum of I/O capability on the peripheral. A button is the
simplest way to put in a tapword, but any sensor that can be
binarized could be used: a microphone, accelerometer, ca-
pacitive or resistive touch sensor, or pressure sensor all pro-
vide miniature, “tappable” input.

Similar to Prescott and TapSongs, RhythmLink’s tapwords
are rhythmic. This is not due to any algorithmic constraint,
but simply because—as Wobbrock points out in his Tap-
Songs paper—people are rhythmic by nature. A simple ex-
ample of a tapword is the rhythm from “Shave and a Hair-
cut”, illustrated in Figure 1.

RhythmLink addresses many of the usability problems en-
countered in earlier research:

• The difficulty of discovering and identifying the peripheral
with which to pair: RhythmLink starts at the peripheral,
and the tapword identifies and authenticates the phone.

• The necessity of having both the phone and peripheral in
hand: RhythmLink only requires the peripheral to be held
by the user; the phone can be anywhere within radio range.

• The need for rich input and/or output: in contrast to schemes
requiring screens [3], keyboards [3], extra sensors [17],
or even lasers [12], RhythmLink requires only a button or
other binary sensor.

By design, RhythmLink is very simple from the user’s per-
spective. However, comparing two tapwords in a secure
way—without revealing a tapword to an untrusted device—is
more complex.

Security Challenges
Using taps rather than alphanumerics for password input
means having to do more complex comparisons in order to
determine if the user has provided the right password. For
normal textual passwords, there is a one-to-one mapping be-
tween a correct password and its stored analogue: “pickle”
is the same every time a user enters it, and if it’s not, it’s not
the right password—“picklE” is still incorrect.

Taps are more ambiguous, however, because they depend on
timing. Humans cannot exactly reproduce timing, so each
time a tapword is entered, there will some amount of error in
the relative timing between notes. In fact, as Wobbrock [25]
points out, Weber’s law indicates that the longer the inter-
val between taps, the more variable a person’s timing will
be [21]. This is why pattern matching techniques were used
in Prescott and TapSongs: a candidate sequence is compared
in turn to each stored sequence—yielding a closeness score,
or distance—until a sufficiently close match is found. One
challenge for wireless pairing therefore, is how to do a dis-
tance comparison in the vein of Prescott or TapSongs, but
without revealing the devices’ tapwords.

Another challenge is the limited computational power and
battery available on tiny devices. A peripheral such as a
pair of headphones will be very limited in its ability to com-
pute and communicate, so any security algorithm must be
lightweight. Computation is not only a concern from a bat-
tery life perspective. If the pairing process is so computation-
ally intense that it takes many seconds to complete, it will be
frustrating to the user.

Finally, tapwords share some weaknesses with text-based
passwords. The shorter a tapword is, the more susceptible it
will be to brute-force attacks (where an attacker tries to guess
every possible combination). An ideal text password will
contain a high degree of randomness (e.g., “kS!U;jL%rq”),
whereas by their very nature tapwords are less random. Al-
though Wobbrock found that rhythmic variation between in-
dividuals usually prevents an attacker from logging in with
a stolen password, it would be ideal to provide the user an
estimate of the strength of their password.

Comparing Tapwords
In order to calculate the similarity between two tapwords,
RhythmLink needs a numeric representation of each. Al-
though information such as pitch (the vertical location of
each note in Figure 1) or pressure or acceleration (depending
on the sensor) could be used as part of the tapword, Rhythm-
Link currently uses only the interval between the starts of
two tap events (rather than intervals, TapSongs [25] uses the
time of down and up events, but we found no advantage with
this approach). Therefore, the tapword “Shave and a Haircut,
Two Bits” might be represented by RhythmLink as shown at
the bottom of Figure 1.

As illustrated in Figure 2, a user will not tap in exactly the
same way every time; so to enable non-precise matching, we
want to capture some of this variability. We do this similarly
to TapSongs: by having the user input their personal tapword
multiple (5–10) times on the phone, and building a model
based on the mean (µ) and standard deviation (σ) of the

Figure 2: “Shave and a Haircut, Two Bits” for all eight
participants in the pilot study. Each shaded band rep-
resents one user; within each band, the black lines
show the duration of each press for ten repetitions of
the sequence. The horizontal axis is three seconds
long; the dotted blue vertical lines indicate one-second
intervals.

length of each interval. We then store, on the phone, a model
of the n interval-long tapword: (µ1, σ1), . . . , (µn, σn).

As discussed earlier, the requirement for secrecy in pair-
ing means that—unlike Prescott [24] and TapSongs [25]—
RhythmLink cannot directly compare sequences. However,
due to the properties of our encryption system (discussed in
the next section), RhythmLink can calculate the Euclidean
distance between two tapwords without revealing the tap-
words themselves. This distance is defined, for a tapword
x and model (µ, σ):

dist =

√∑
i

(
µi−xi

σi

)2
(1)

For each interval i, we divide the difference between its
length xi and the model’s mean length µi by the standard
deviation for that interval σi. Dividing by σ makes it easier
to match with longer intervals, which—in accordance with
Weber’s law [21]—will have a higher standard deviation.

When tapword is entered on the peripheral, it communicates
with each of the surrounding phones. Using the Euclidean
distance, it compares its tapword with each phone’s model; if
the distance is less than some threshold, then the two devices
know their tapwords match, and connect.

Security
In order to securely pair, neither device should reveal its tap-
word to the other. The challenge is how the Euclidean dis-
tance calculation can be performed without either client be-
ing able to directly interact with the other’s tapword.

Terminology and Preliminaries Encryption of x with key K
is denoted EK(x), while decryption of the same is DK(x).
We therefore might have DK(EK(x)) = x.

RhythmLink uses elliptic curve cryptography (ECC) [8], a
cryptographic scheme that is often used for embedded de-
vices. ECC is asymmetric; that is, each party has a public
key (K) and a private key (K̃). Anyone can use a public key

to encrypt a message: EK(m) = m̂, but the public key can-
not be used to decrypt m̂. Only the private key can be used:
DK̃(m̂) = m. When a number is encrypted, it looks like a
random number; for example, the value “5” might encrypt to
EK(5) = 1dcca23355272056f04fe8bf20edfce0.

One of the interesting properties of ECC is that two en-
crypted numbers can be added to each other without decrypt-
ing them first, and an encrypted number can be multiplied by
an unencrypted number without decrypting it first. So, for a
given numeric constant j,EK(j)+EK(x) = EK(j+x) and
j · EK(x) = EK(jx). In RhythmLink, these two properties
allow the phone and peripheral to collaboratively perform
the Euclidean distance calculation on their tapwords without
actually revealing the tapwords to each other.

Distance Calculation As described earlier, the user trains
the phone for their tapword, yielding a model (µ1, σ1), . . . ,
(µn, σn). When pairing, the user inputs a tapword—a sin-
gle time—on the peripheral. This tapword is represented as a
set of intervals x1, . . . , xn (later we will discuss the situation
where the tapword and the model are of unequal lengths).
The goal of the peripheral is to find a phone with a matching
model; so it communicates with each visible phone in turn.
During this communication, the goal of the two devices is to
determine if the Euclidean distance between the peripheral’s
tapword and the phone’s model is under some threshold t:
dist <? t. To collaboratively calculate the distance, Equa-
tion 1 can be squared and expanded:

dist =

√√√√∑
i

(
µi − xi

σi

)2

dist2 =
∑

i

(
µi − xi

σi

)2

=
∑

i

µ2i − 2µixi + x2i
σ2
i

=
∑

i

µ2i
σ2
i

+
∑

i

(
−2µi

σ2
i

· xi
)

+
∑

i

x2i
σ2
i

=
∑

i

µ2i
σ2
i︸ ︷︷ ︸

a©

+

(
−2µ1

σ2
1︸ ︷︷ ︸

b©

·x1 + . . .+
−2µn

σ2
n︸ ︷︷ ︸
b©

·xn
)

+
∑

i

(
1

σ2
i︸︷︷︸

c©

x2i

)

This equation requires input from both sides to compute: the
intervals xi from the peripheral and the model (µi, σi) from
the phone. However, because the phone and peripheral don’t
trust each other yet, they don’t want to reveal this informa-
tion. Therefore, they use encryption to hide the values, col-
laboratively computing the result of the distance equation.

The phone generates a public key PH and sends it to the pe-
ripheral. Using its key, the phone also encrypts the sum of its
squared intervals a© EPH(

∑
µ2
i /σ

2
i) and, for each individual

interval i, EPH(− 2µi/σ
2
i) (the b©s) and EPH(1/σ2

i) (the
c©s), and sends these to the peripheral.

The peripheral’s goal is to generate dist2. Recalling that,
using ECC, we can multiply and add encrypted values and
they will remain encrypted, the peripheral calculates the third

term, using the encrypted c©s and its own xis:∑
i

(
1

σ2
i

x2i

)
=

1

σ2
1

x21 + · · ·+
1

σ2
i

x2i

= EPH

(
1

σ2
1

)
x21 + . . .+ EPH

(
1

σ2
n

)
x2n

= EPH

(
1

σ2
1

x21

)
+ . . .+ EPH

(
1

σ2
n

x2n

)
= EPH

(∑
i

x2i
σ2
i

)
In a similar fashion, provided with n EPH(− 2µi/σ

2
i)s (the

b©s), the peripheral can compute the center term, yielding

EPH

(∑
i

−2µixi
σ2
i

)
Now the peripheral has, encrypted, all of the pieces of the
equation, which it can add together:

EPH

(∑
i

µ2i
σ2
i

)
+EPH

(∑
i

−2µixi

σ2
i

)
+EPH

(∑
i

x2

σ2
i

)
=

EPH

(∑
i

µ2i − 2µixi + x2

σ2
i

)
=

EPH

(∑
i

(
µi − xi

σi

)2)
= EPH(dist2)

Now the peripheral can sendEPH(dist2) to the phone, which
can decrypt it DP̃H(EPH(dist2)) = dist2 and compare it
with the threshold: dist2 <? t2.

Assuming that the result is under the threshold, the phone
now trusts the peripheral. However, the peripheral still does
not trust the phone, so the phone must prove that its model
is compatible. Since the phone trusts the peripheral, it can
simply send its model to the peripheral, which can compare
it directly. However, there is still the possibility of an on-
going MITM attack. To encrypt both the model and fur-
ther communication, the two devices must establish a session
key in a way resistant to MITM attacks. Using Password-
Authenticated Key Exchange (PAKE) [2], such a key can be
created using simple information known to both devices. In
our case, the number of intervals (known a priori to each de-
vice) can be used to bootstrap secure key generation. Using
this session key, the phone can encrypt its model and send
it to the peripheral, which decrypts it and computes the Eu-
clidean distance directly with its xis. If there is a match, the
peripheral knows it can trust the phone.

Unequal Tapword Lengths An issue is how to compare tap-
words that are unequal lengths. The problem is twofold: first,
the Euclidean distance works only on sequences of equal
length, and second, to remain completely secure, neither the
phone nor the peripheral should know whether or not their
tapwords have the same number of intervals.

Our solution for this is to work with a standard length: we
pick some average number of intervals n, and any tapword
that is longer than n gets truncated. Any tapword shorter
than n gets padded to n intervals with a pre-determined set of

large filler values fi. (In order to prevent guessing the num-
ber of filler values, each has a tiny random amount added to
it, thus changing the encrypted value.) The values are uni-
versally agreed upon by RhythmLink-compliant systems, so
that two tapwords of length m (where m < n) compare cor-
rectly with the Euclidean distance: the remaining fi values
will calculate as having (nearly) 0 distance, and only the m
differing values will have any affect on the final calculation
of dist. Tapwords of differing lengths will have xi − fi in-
cluded in the distance, yielding a large value that will not fall
under the threshold.

Further Securing the Calculation A remaining issue is that
the phone gains some information—dist—about how its se-
quence compares against the peripheral’s, and could poten-
tially use this to guess at its sequence. Ideally, either device
would find out whether its sequence matches or not without
ever learning dist. We can accomplish this goal through the
use of a so-called “black box” function, which will allow the
peripheral to perform the comparison dist <? t without re-
vealing dist.

Recall that, at the end of its calculations, the peripheral is
in possession of EPH(dist2). It generates a random value r
and adds it: EPH(dist2 + r) = EPH(v) and sends the result
to the phone. The phone can use its key and decrypt this
message: DP̃H(EPH(v)) = v. Because the phone doesn’t
know r, it can’t calculate dist2 from v.

To compare dist2 with t2, the peripheral creates an encrypted,
or “garbled”, function [9]; similar to arithmetic computation
with ECC, this function allows efficient comparison of two
values without revealing the values to either device. The pe-
ripheral constructs and sends this function to the phone.

To make the comparison, the garbled function takes v and t2
as input, internally performing the computation

f(v, t2) = v − r <? t2

= (dist2 + r)− r <? t2

= dist2 <? t2

returning a one-bit Boolean value T to the phone. Because
the garbled function is constructed by the peripheral, it can be
confident that the phone is not trying to find out what dist2
is. If T is true, the phone knows it can trust the peripheral. As
above, it then sends the peripheral its model, which compares
it with its intervals and determines that it can trust the phone,
and they set up secure communications.

Choosing the Threshold Because a phone will be owned
by a single user, but peripherals may pass between people,
the phone should be the device that determines the threshold
for matching. The threshold can be dynamically generated
on the phone when the tapword is initially input by the user.
Taking each of the N repetitions of the tapword, and finding
the Euclidean distance to each of the other inputs will give
us a mean µ and standard deviation σ; we can then set the
threshold to µ±kσ. We can pick k to be more or less restric-
tive; assuming a normal distribution, k = 3 will encompass
99.7% of the variation in a user’s taps.

Efficiency
As discussed earlier, RhythmLink is intended to work with
I/O-constrained devices. In a phone/peripheral pairing situa-
tion, it is possible that at least the peripheral will have a small
battery and a low-power embedded processor. To maintain an
acceptable user experience, delays in pairing should be min-
imized; thus, it is important that RhythmLink be efficiently
executable on low-end CPUs and microprocessors.

The major power drain in RhythmLink comes from the com-
putation involved in ECC. Therefore, if we can avoid doing
cryptographic operations unless they are absolutely neces-
sary, we can save both power and time. In an ideal situa-
tion, the entire tapword comparison process described above
will only take place once: between the peripheral and the in-
tended phone. However, the real world is rarely ideal—in a
room full of phones, we want to avoid the peripheral having
to attempt to authenticate with each one!

In order to encourage a closer-to-ideal situation, RhythmLink
uses a selector, consisting of a minimal set of information
about the tapword, to attempt to narrow down the number of
potential matches between a peripheral and the surrounding
phones. Each phone allows unencrypted viewing of its selec-
tor, and so a peripheral will only try to pair with a phone that
has the same selector as itself.

The rationale behind the selector is twofold: first, it reduces
the computational overhead of pairing by orders of magni-
tude. Without the selector, the peripheral must attempt se-
cure authentication with every phone in the vicinity until it
finds one that matches, incurring not only a significant power
drain, but increased latency. Secondly, using a selector re-
duces the information about the tapword that is leaked dur-
ing the course of normal usage: each failed authentication
eliminates a possibility, making the tapword less secret. The
selector eliminates most failed authentications; additionally,
it allows the peripheral to treat phones that claim to have a
matching selector but fail authentication as suspicious.

The challenge in choosing a selector is that it should dis-
close just enough information about the tapword to determine
whether two devices should attempt authentication—but no
more, to prevent guessing of the tapword (for example, using
the number of intervals in the tapword would reveal informa-
tion useful to an attacker). Additionally, the selector gener-
ation needs to work with the random timing errors present
during human tapword input.

Currently, RhythmLink uses the first two intervals of a tap-
word as the selector. Before any authentication attempt, the
phone reveals the mean (µi) and standard deviation (σi) of
the lengths of the first two intervals of its tapword to the
peripheral. The peripheral tries to match its first two inter-
vals (xi), and only proceeds if there is a reasonably close
match. Because it has direct access to both devices’ selec-
tors, RhythmLink uses part of TapSongs’ [25] matching pro-
cess to determine whether there is a match or not:

|xi − µi| ≤? 3σi

We chose the selector this way for three reasons. First, the
selector must be based on pattern matching, like the full
authentication, because human timing errors make statistics
based on the tapword as a whole unreliable. Secondly, by
generating a selector based on the start of the tapword, a
peripheral can determine whether each phone is a potential
match before performing encrypted computations. Finally,
after experimentation (see “Preliminary Experiments” sec-
tion), we chose to use two intervals as a balance between
keeping the tapword secret and efficiently pre-emptively re-
jecting non-matching phones.

Tapword Strength
Another important consideration in RhythmLink is how to
encourage users to choose good tapwords. One way is to
give feedback to the user on how “strong” a given tapword
is. Similar to systems using text-based passwords that indi-
cate whether a password will be resistant to guessing—for
example, setting a password for online banking—we like-
wise want to assign a given tapword a strength score. There
are a number of metrics we can use to indicate the strength
of a tapword; most either assign or take away points from the
total score:

length Is the tapword long enough? A minimum length can
be required, or points can be deducted for shorter tapwords,
or points assigned for longer ones.

speed A shorter—in terms of time, rather than number of
taps—tapword might be harder for another party to over-
hear, and so may be more secure.

commonality Similar to how “password” is a common,
and poor, password, “Shave and a Haircut, Two Bits” may
likewise become a common and poor tapword. Given a
built-in list of common rhythms, RhythmLink can use the
Euclidean distance to prevent such tapwords from being
chosen.

interval sizes Having a mix of long and short intervals will
make a tapword harder to guess; therefore, counting the
number of intervals larger or shorter than some percentage
of the overall length (i.e., if the tapword is 1000 millisec-
onds long, counting intervals under 5%—50 ms—or over
60%—600 ms) can contribute to the score.

consecutive intervals The more heterogeneous the interval
lengths are, the more secure the password will be. We can
look at each set of two consecutive intervals, and assign a
score based on the difference between them as compared
to the overall length. For example, if the tapword is 1000
ms long, and we have two tap intervals at 100 and 110 ms,
we can assign a score of −(1000/(110− 100)) = −100.

specific rhythms Specific sub-rhythms can be looked for.
For example, a (desirable) fast double-tap can be defined
as an interval shorter than some fixed value (rather than
a percentage of the total length) such as 50 ms, or a long
interval can be similarly defined (e.g. 250 ms).

RHYTHMLINK IMPLEMENTATION
To evaluate the RhythmLink security protocol, we employed
TASTY [6], a protocol compiler for performing secure cryp-
tographic computation. We provide a high-level description

of the RhythmLink protocol, and use TASTY to automati-
cally generate programs that simulate the phone and periph-
eral. Once invoked, these programs execute RhythmLink
over the network, and log the protocol overhead during exe-
cution.

We created a prototype RhythmLink system with three Nokia
N900 mobile phones, where one phone (N900-P) acts the
part of “peripheral” and the other two (N900-X and N900-Y)
act as “phones”. In our prototype, we used the touchscreen as
input to RhythmLink. In an ideal RhythmLink implementa-
tion, devices would perform authentication over a low-level
protocol, like Bluetooth; however, in the interests of rapid
prototyping, our N900-based system communicates over a
local 802.11 network.

To use our prototype, a user enters their tapword by tap-
ping on the touchscreen of N900-P. N900-P then generates
its selector according to the mechanism described in the Effi-
ciency section, and requests selectors from all visible phones.
N900-X and -Y respond with their selectors; if either is a
match, N900-P will launch the TASTY-generated “periph-
eral” program to perform secure RhythmLink authentication
with the “phone” program on the other device.

PRELIMINARY EXPERIMENTS
Data Collection
In order to test our algorithms, we asked eight volunteers
to input tapwords. Participants were drawn from our lab,
ranged in age from 24–40, and two were female. Using our
Nokia N900 RhythmLink prototype to record the taps on the
resistive touchscreen, we asked each volunteer to tap in a tap-
word of their own devising ten times. Then participants were
requested to tap “Shave and a Haircut, Two Bits” (Figure 1)
ten times. We recorded timestamps for tap down and re-
lease events. Figure 3 illustrates each volunteer’s personally-
chosen tapword, and Figure 2 shows “Shave and a Haircut”
for each participant.

We asked the volunteers what rhythm they chose for a per-
sonal tapword; from 1–8, they used: “Day Glow” by Tow
Head, “On” by Aphex Twin, a song from a Chinese movie,
Mozart’s “Requiem in D Minor”, “Row Your Boat”, “Mary
Had a Little Lamb”, “Jingle Bells”, and an impromptu rhythm.

Selector Performance
As described earlier, the purpose of the selector is to prevent
devices from having to authenticate if it is unlikely that they
will have a match. To investigate the performance of the se-
lector, we perform leave-one-out validation: we remove one
instance of an initial tapword from the list of tapwords, and
then build a model with those remaining. We then use the
remaining tapword, and all other users’ tapwords, to create
selectors, and compare them with the model.

We tested using one, two, and three intervals for the selector.
For each test, we recorded the true positive rate (how often
the selector correctly indicated the two devices should con-
nect) and the false positive rate (how often there would have
been an unnecessary authentication attempt).

Using two intervals for the selector, the average rate of true
positives for the users’ custom rhythms was 98%: just two

Figure 3: The custom tapword for all eight participants
in the pilot study. Each shaded band represents one
user; within each band, the black lines show the dura-
tion of each press. The horizontal axis is five seconds
long; the dotted blue vertical lines indicate one-second
intervals.

users had one out of ten tested selectors fail to indicate an
authentication attempt should be made. The false positive
rate was 9%. For “Shave and a Haircut”, the average true
positive rate was 94%, while the false positive rate was natu-
rally higher at 32%.

For using the first three intervals to make up the selector,
the average true positive rate for custom rhythms was 92%—
lower than for two intervals! The false positive rate was just
3%. For “Shave and a Haircut”, the true positive rate was
still high at 93%, while the false positive rate was 14%.

These results highlight the impact of human error on the sys-
tem. That is, the more taps the user makes, the more likely
she is to make an error. Therefore, to err on the side of a
satisfactory user experience—a successful connection on the
first try—we use two intervals for the selector.

Tapword Distinguishability
One of the most important aspects of RhythmLink, of course,
is that the tapwords themselves are secure; that is, that some-
one can’t accidentally perform a successful authentication
with the wrong tapword. To investigate this issue, we used
RhythmLink to perform leave-one-out validation on our users’
tapwords.

First, we compare the custom tapwords from each user. On
average, the Euclidean distance between tapwords from the
same user was 26.40, with a standard deviation of 5.10. Be-
cause only two users had tapwords with the same number
of taps, differing tapwords were easily rejected. Truncating
every user’s tapword to the shortest number of intervals—
four—the average distance between users’ own tapwords was
1.27, while the mean distance between different users’ tap-
words was 20.52, a sufficiently large difference to easily re-
ject wrong attempts.

Following Wobbrock in TapSongs [25], we next compare all
users on the same rhythm. With the “Shave and a Haircut”
tapword, the average distance within a single user was 18.45,
with a standard deviation of 7.35. Between users, the aver-

age distance was 79.50, with the average minimum distance
between two users’ tapwords being 25.59. This is a promis-
ing result, showing us a very low probability of accidental
overlap between two users with the same tapword. Indeed,
Wobbrock addressed purposeful attempts to break security,
and discovered that users found it very difficult to tap exactly
the same rhythm as another user.

Tapword Reproducibility
In order to determine how well people can remember their
tapwords, we re-collected data from each user after between
five and twelve days after the initial test. We asked each
volunteer to do the same thing as the initial study—to tap
in their custom tapword, and then “Shave and a Haircut”.
For each user, we then created a model based off of their first
day’s tap input, and used each individual second day tap as
input to RhythmLink.

We found that—with one exception—for their custom tap-
words, users were in general able to remember and re-tap
their rhythms. One user could not remember his rhythm. For
the other users, there was an average difference of 6.72 be-
tween taps entered on the initial day and on the latter day.

Efficiency
Our N900-based prototype executed the RhythmLink proto-
col extremely quickly, with no user-perceivable delay. How-
ever, the N900 possesses a 600MHz processor—standard for
a modern smartphone, but unrealistic for a peripheral device
such as a headset or wristwatch. To validate RhythmLink on
lower-capability devices, we measured the performance of
ECC on an NXP LPC13431, a low-power embedded CPU.
Processors of this type are commonly found in devices such
as headsets, medical devices, and appliances.

For the LPC1343 running at 72MHz, optimized ECC takes
.139 seconds per mathematical operation. On the peripheral,
RhythmLink has an overhead of two operations per tap in-
terval. Thus, each interval costs us .278 seconds. If our
maximum tapword length is 12 taps, we have 11 intervals.
Taking off two for the selector, we have 9 intervals involved
in computation. So for this processor and maximum tapword
length, we can expect a pairing time of around 2.5 seconds.
Note that because the selector generation and communication
takes place after the first three taps (two intervals), during the
remaining taps, it takes no user-perceptible time.

With optimized hardware, RhythmLink can be made even
more efficient. ECC encryptions, which dominate the com-
putational overhead of RhythmLink, can be accelerated by
several orders of magnitude with lightweight, inexpensive
dedicated hardware. For example, an ECC engine based on
a 9.9MHz FPGA [18] reduces the computational latency to
56µs per operation, representing a 100,000-times improve-
ment over the general-purpose LPC1343 processor that we
measured. Such hardware cryptography accelerators are be-
coming common in embedded chips, such as the AES (a stan-
dard for encryption) engine in many Bluetooth chips. There-
fore, we envision that RhythmLink will greatly benefit from

1http://ics.nxp.com/products/lpc1000/lpc13xx/
˜LPC1343/

http://ics.nxp.com/products/lpc1000/lpc13xx/~LPC1343/
http://ics.nxp.com/products/lpc1000/lpc13xx/~LPC1343/

hardware ECC acceleration as it becomes available in off-the
shelf components and devices.

Pairing Speed
RhythmLink requires much less pairing time than existing
pairing methods, as it is bounded by computation rather than
the speed of user input. As discussed above, with a maxi-
mum of nine intervals in a tapword, a RhythmLink pairing
procedure will take under three seconds. This pairing time
is shorter than almost all of the pairing methods described in
the literature. Compare RhythmLink with, for example, the
widely-used number-matching pairing method, which takes
8.6 seconds on average [10]. As hardware speed improves,
RhythmLink’s performance will likewise improve.

CONCLUSIONS
RhythmLink enables secure device pairing while improving
usability: it is fast to execute, intuitive for the user, and does
not require that both devices be physically co-present. By
using rhythmic tap input, RhythmLink allows peripheral de-
vices to have little to no visible input mechanism for pair-
ing: just a button will do. The technique only requires input
output sufficient to inform the user whether pairing worked,
obviating the need for more complex displays.

In an informal post-study survey, user response to Rhythm-
Link was generally positive, with pilot study participants in-
dicating they would enjoy using such a system to pair their
devices.

Compared to other methods, RhythmLink shifts the overhead
in pairing from the user to the computational device. That is,
the user interaction is less involved, but there is more com-
putation involved. This is a decided advantage, as computing
power continues to increase, while human capability remains
relatively constant.

Our next steps are to implement RhythmLink on embedded
hardware and test it during longer-term use. We are also
interested in the impact of using different input modalities:
does using a button lead to different rhythmic variability than
the touchscreen, and does using a button on one device and a
microphone on the other make the tapwords harder to match?

REFERENCES
1. D Ashbrook, P Baudisch, and S White, Nenya: Subtle and

eyes-free mobile input with a magnetically-tracked finger
ring, Proc. CHI, 2011, pp. 2043–2046.

2. S Bellovin and M Merritt, Encrypted key exchange:
password-based protocols secure against dictionary attacks,
Proceedings of IEEE Symposium on Research in Security
and Privacy, 1992, pp. 72–84.

3. Bluetooth SIG, Bluetooth core specifications,
http://www.bluetooth.org, April 2011.

4. MK Chong, G Marsden, and H Gellersen, GesturePIN: Using
discrete gestures for associating mobile devices, Proc.
MobileHCI, 2010, pp. 261–264.

5. T Falck, H Baldus, J Espina, and K Klabunde, Plug ‘n play
simplicity for wireless medical body sensors, Mobile
Network Applications 12 (2007), no. 2-3, 143–153.

6. W Henecka, S Kögl, AR Sadeghi, T Schneider, and
I Wehrenberg, TASTY: tool for automating secure two-party

computations, Proc. ACM Conf. on Computer and
communications security, 2010, pp. 451–462.

7. LE Holmquist, F Mattern, B Schiele, P Alahuhta, M Beigl,
and HW Gellersen, Smart-its friends: A technique for users
to easily establish connections between smart artefacts, Proc.
Ubicomp, 2001, pp. 116–122.

8. N Koblitz, Elliptic curve cryptosystems, Mathematics of
Computation 48 (1987), no. 177, 203–209.

9. V Kolesnikov, AR Sadeghi, and T Schneider, From dust to
dawn: Practically efficient two-party secure function
evaluation protocols and their modular design, Cryptology
ePrint Archive, Report 2010/079, 2010,
http://eprint.iacr.org/.

10. A Kumar, N Saxena, G Tsudik, and E Uzun, A comparative
study of secure device pairing methods, Pervasive and Mobile
Computing 5 (2009), no. 6, 734–749.

11. J Linsky, Simple pairing whitepaper,
http://mclean-linsky.net/joel/cv/Simple%
20Pairing_WP_V10r00.pdf, April 2011.

12. R Mayrhofer and H Gellersen, Spontaneous mobile device
authentication based on sensor data, Information Security
Technical Report 13 (2008), no. 3, 136–150.

13. C Metzger, M Anderson, and T Starner, Freedigiter: a
contact-free device for gesture control, Proc. ISWC, 2004,
pp. 18–21.

14. T Ni and P Baudisch, Disappearing mobile devices, Proc.
UIST, 2009, pp. 101–110.

15. J Rekimoto, Synctap: synchronous user operation for
spontaneous network connection, Personal and Ubiquitous
Computing 8 (2004), no. 2, 126–134.

16. J Rekimoto, T Miyaki, and M Kohno, Proxnet: Secure
dynamic wireless connection by proximity sensing, Proc.
Pervasive, 2004, pp. 213–218.

17. R Roman and J Lopez, KeyLED—transmitting sensitive data
over out-of-band channels in wireless sensor networks, Proc.
MASS, 2008, pp. 796–801.

18. N Saqib, F Rodriguez-Henriquez, and A Diaz-Perez, A
parallel architecture for fast computation of elliptic curve
scalar multiplication over gf(2m), Proc. Parallel and
Distributed Processing Symp., 2004, pp. 144–152.

19. C Soriente, Gene Tsudik, and E Uzun, Secure pairing of
interface constrained devices, International Journal of
Security and Networks 4 (2009), no. 1/2, 17–26.

20. A Spahić, M Kreutzer, M Kahmer, and S Chandratilleke,
Pre-authentication using infrared, Proc. Workshop on
Privacy, Security and Trust within the Context of Pervasive
Computing, 2005, pp. 1–7.

21. D Sternad, WJ Dean, and K M Newell, Force and timing
variability in rhythmic unimanual tapping, Journal of Motor
Behavior 32 (2000), no. 3, 249–267.

22. E Uzun, K Karvonen, and N Asokan, Usability analysis of
secure pairing methods, Financial Cryptography and Data
Security, 2007, pp. 307–324.

23. M Weiser, The computer for the 21st century, Scientific
American (2002), 94–104.

24. T Westeyn and T Starner, Recognizing song–based blink
patterns: Applications for restricted and universal access,
Proc. Automatic Face and Gesture Recog., 2004,
pp. 717–722.

25. JO Wobbrock, Tapsongs: tapping rhythm-based passwords
on a single binary sensor, Proc. UIST, 2009, pp. 93–96.

http://www.bluetooth.org
http://eprint.iacr.org/
http://mclean-linsky.net/joel/cv/Simple%20Pairing_WP_V10r00.pdf
http://mclean-linsky.net/joel/cv/Simple%20Pairing_WP_V10r00.pdf

	ABSTRACT
	Introduction
	RhythmLink Use Example
	Contributions
	Design Challenges

	Related Work
	Wireless Pairing
	Rhythm-Based Authentication
	Bluetooth Pairing
	Pairing Research

	RhythmLink
	Security Challenges
	Comparing Tapwords
	Security
	Terminology and Preliminaries
	Distance Calculation
	Unequal Tapword Lengths
	Further Securing the Calculation
	Choosing the Threshold

	Efficiency
	Tapword Strength

	RhythmLink Implementation
	Preliminary Experiments
	Data Collection
	Selector Performance
	Tapword Distinguishability
	Tapword Reproducibility
	Efficiency
	Pairing Speed

	Conclusions
	REFERENCES

