
Dandelion: A Framework for Transparently Programming
Phone-Centered Wireless Body Sensor Applications for Health

Felix Xiaozhu Lin1, Ahmad Rahmati2, and Lin Zhong1,2
1Dept. of Computer Science and 2Dept. of Electrical & Computer Engineering, Rice University

Houston, TX, USA
{xzl, rahmati, lzhong}@rice.edu

Abstract
Many innovative mobile health applications can be enabled
by augmenting wireless body sensors to mobile phones, e.g.
monitoring personal fitness with on-body accelerometer and
EKG sensors. However, it is difficult for the majority of
smartphone developers to program wireless body sensors
directly; current sensor nodes require developers to master
node-level programming, implement the communication
between the smartphone and sensors, and even learn new
languages. The large gap between existing programming
styles for smartphones and sensors prevents body sensors
from being widely adopted by smartphone applications,
despite the burgeoning Apple App Store and Android Mar-
ket.
To bridge this programming gap, we present Dandelion1, a
novel framework for developing wireless body sensor appli-
cations on smartphones. Dandelion provides three major
benefits: 1) platform-agnostic programming abstraction for
in-sensor data processing, called senselet, 2) transparent
integration of senselets and the smartphone code, and 3)
platform-independent development and distribution of
senselets.
We provide an implementation of Dandelion on the Maemo
Linux smartphone platform and the Rice Orbit body sensor
platform. We evaluate Dandelion by implementing real-
world applications, and show that Dandelion effectively
eliminates the programming gap and significantly reduces
the development efforts. We further show that Dandelion
incurs a very small overhead; in total less than 5% of the
memory capacity and less than 3% of the processor time of
a typical ultra low power sensor.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – distributed applications

General Terms
Design, Experimentation, Performance

1. Introduction
Six in ten people (60%) of world’s population have mobile
phones [1]. A significant and growing percentage of mobile
phones are smartphones that enjoy mobile Internet, power-
ful processor, and massive storage. Because mobile users
usually keep their phones within the arm’s reach [2], many
have envisioned that smartphone-like devices serve as the
personal hub for body sensors, bridging the sensors with
human users and the Internet [3]. Furthermore, wireless
body sensors naturally extend the “sense” of a smartphone
and open doors to new applications, especially in healthcare.
For example, wireless body sensors can measure physical
activity, collect physiological data, and even infer social
context. Such information provides key insights into the
health and lifestyle of the user and can potentially help the
user make day-to-day in situ decisions that have an impact
on their health. Numerous research prototypes have been
reported in literature, and there has been a few successful
commercial health applications in recent years, e.g. the
Nike+iPod Sport Kit [4] and the WIN human recorder [5].
Even so, only a few of the millions of third-party smart-
phone applications employ body sensors, despite the com-
mercial availability of Bluetooth body sensors. We contri-
bute the lack of body-sensor applications for smartphones to
the disparity between programming a smartphone and pro-
gramming wireless sensors, which requires smartphone de-
velopers to directly program a sensor node with a new pro-
gramming language.
Toward addressing this challenge, we seek to enable smart-
phone developers to easily implement data processing that
executes in wireless sensors, without learning the particular
programming style coupled with the target sensor platform.
Our solution, called Dandelion, is a framework combining
both programming support and execution support for in-
sensor data processing. The key features of Dandelion are:
• A platform-agnostic, smartphone-style programming

abstraction called senselet;
• A mechanism for transparently integrating senselets

with the smartphone application; and
• A platform-independent mechanism for distributing and

deploying senselet executables.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Wireless Health’10, October 5–7, 2010, San Diego, USA.
Copyright 2010 ACM 978-1-60558-989-3...$10.00.

1 A plant best known for its tiny, airborne seeds, which
remind the authors of wireless body sensors

With these features, Dandelion allows smartphone develop-
ers to program in-sensor data processing using the smart-
phone programming style in senselets. Dandelion provides
the transparency in two key aspects: programming style
transparency, which makes developing senselets very close
to developing traditional smartphone applications; target
platform transparency, which makes the development, dis-
tribution, and deployment of senselets independent of any
particular sensor platform. Throughout this paper, we use
the term sensor platform, or simply platform, to refer to the
specific combination of hardware and software of a sensor
node, unless specified otherwise.
We prototype Dandelion with the Maemo Linux smartphone
platform, used by Nokia N900 and N810, and the Rice Orbit
body sensor platform. We experimentally evaluate our pro-
totype with real-world applications including Fall-detector,
Pedometer, and EKG monitoring. Our evaluations show that
the Dandelion framework significantly reduces the applica-
tion developers’ burden comparing with existing methods of
directly programming sensors. Furthermore, Dandelion in-
curs an overhead of less than 5% of the memory capacity
and less than 3% of the processor time of a typical low-
power body sensor.
Dandelion supports a healthy ecosystem that promotes the
interests of all three parties involved in body sensor applica-
tions: the sensor vendors, the smartphone developers, and
the end users, as illustrated in Figure 1. 1) A sensor vendor
provides lightweight Dandelion support for its sensor. Be-
cause its sensor can be easily programmed by any develop-
er, the vendor will see more smartphone applications for its
sensors. 2) A smartphone developer only needs to program
senselets as part of the smartphone application without
learning the specifics of any particular sensor platform or
programming style. Because such applications can transpa-
rently work with any sensor that has Dandelion support, the
developer benefits by reaching a large number of users who
may choose different sensors. 3) Finally, smartphone users
can benefit from a more flexible choice of sensors for their
intended applications, as long as the sensors have the Dan-
delion support. Consequently, users will also benefit from a
wider range of emerging applications and sensors.
The rest of the paper is organized as follows. We analyze
the challenges towards the development of smartphone body
sensor applications and motivate Dandelion design in Sec-
tion 2. We then present the programming and execution

support of Dandelion in Sections 3 and 4, respectively. We
present our prototype based on a Nokia N900 smartphone
and Rice Orbit sensors in Section 5, and evaluate Dandelion
in Section 6. We discuss related work in Section 7 and final-
ly conclude in Section 8.

2. Motivation
Among millions of smartphone applications, only a few
employ body sensors. In this section we first highlight the
challenges faced by smartphone developers wanting to use
body sensors, and then motivate the design of Dandelion by
showing the limitations of existing solutions.
2.1 The Gap between Two Programming Styles
Figure 2 shows the tension between system energy efficien-
cy and ease of body sensor application development. At one
extreme, (ease of development), the developer can treat the
sensors as dumb data suppliers and processes the raw data
on the smartphone (“Dumb supplier” in the figure). Figure 3
uses a skeleton code to illustrate the smartphone style for
processing sensor data, which uses a clear interface in the
object-oriented fashion. While very friendly to smartphone
developers, this paradigm is extremely energy inefficient
because moving excessive raw data over the wireless link
consumes a lot of energy, and consequently reduces the bat-
tery lifetime of the phone and sensors.
To improve the efficiency, many research prototypes, e.g. [6]
[7], implement a fixed set of sensor routines to support a
pre-defined set of data processing in the sensor (“Pre-
defined routines” in Figure 2). This is similar to the Appli-
cation Profiles provided by Bluetooth. While this approach
improves energy efficiency for some applications, its lack of
sensor programmability inevitably restricts developers to
create applications that require novel, application-specific
data processing.
At the other extreme, the application developers can careful-
ly partition the data processing between the phone and the
sensors, and then program both directly. While this para-
digm can be very efficient, it usually requires the developer
to master sensor node-level programming, with low-level
abstractions that are tightly coupled with various underlying
platforms [8-11], and probably involves a different pro-
gramming language. For example, TinyOS requires devel-

Figure 2. The tension in developing sensor data processing
for smartphone body sensor applications

More friendly to
Phone developers

More
energy-efficient

In-sensor
processing

In-phone
processing

Phone-style
programming

Sensor-style
programming

Dumb
supplier

Pre-defined
routines

Directly program
sensors

Dandelion

Figure 1. The ecosystem for smartphone health applica-
tions promoted by Dandelion

Sensor
vendor

Smartphone
developers

Senselet

Sensor platform

Dandelion support

Main body
Body Sensor
Application

(smartphone style)
Transparent
integration Smartphone

users

opers using nesC language [12] to write sensor code as a set
of software components. In addition, TinyOS requires de-
velopers to define events and commands as the interface for
each component, and properly wire interfaces together. Al-
though very effective at programming nodes in wireless
sensor networks, such programming requirements are for-
eign to many smartphone developers and are significantly
different from existing smartphone programming styles.
Macro-programming models at the network-level [13-15]
target relatively large-scale sensor networks. The introduc-
tion of new language constructs such as new statements,
predicates, rules, or task graphs, makes them even more
difficult for smartphone programmers to manage. In short,
the gap between the smartphone programming style and that
of various sensor platforms constitutes a practical barrier for
the majority of smartphone developers to leverage body
sensors and create applications.
2.2 Overview of Dandelion
Our goal is to achieve both high efficiency and ease of de-
velopment by making sensor programming transparent to
the smartphone developers (“Dandelion” in Figure 2). By
“transparent”, we mean that smartphone developers do not
have to deal with the native programming abstraction or
hardware/software specifications of the sensor. Our solution
toward this goal is Dandelion, a framework that allows
smartphone application developers to “program” body sen-
sors by simply writing the code as a smartphone software
module. Dandelion achieves such design goal with senselet,
a smartphone-style, platform-agnostic programming abstrac-
tion for in-sensor data processing.
Dandelion supports this abstraction from both the pro-
gramming aspect (Section 3) and the execution aspect (Sec-
tion 4). For programming support, Dandelion defines the
degree of transparency with three key design decisions: a
compact set of platform services for senselet to access plat-
form resource, the Remote Method Invocation (RMI) me-
chanism for integrating senselets with the application code
running on the smartphone (called main body in this work),
and the two-phase compilation technique for generating
senselet executable.

For execution support, Dandelion manages and executes
senselets with its distributed middle layer or runtime system.
The runtime system consists of a smartphone runtime com-
ponent and one or more sensor runtime components. Run-
time components communicate with messages. The smart-
phone runtime acts as the coordinator to command all sensor
runtimes, and a sensor runtime fulfills such commands and
executes the senselet code.

3. Programming Support
Toward making sensor programming transparent, Dandelion
targets practical transparency. A complete transparency is
ideal to the developer: the development and execution of a
senselet will be indistinguishable from a smartphone soft-
ware module. However, such complete transparency is very
expensive, if not impossible, given the huge discrepancy
between the hardware and software environments on the
smartphone and on body sensors. For example, implement-
ing coherent shared memory across the smartphone and sen-
sors incurs prohibitive overhead.
Dandelion defines practical transparency for senselet with
four design decisions: 1) hide platform-dependent pro-
gramming styles inside the template (Section 3.1), 2) choose
a compact set of platform services as the unified interface to
platform resources (Section 3.2), 3) use the RMI mechanism
to transparently integrate senselets into the smartphone ap-
plication (Section 3.3), and 4) compile and distribute sense-
lets as platform-independent intermediate representations
(IRs) and translate the IRs into platform-specific binaries
during application installation (Section 3.4). We will discuss
the four decisions in details below.
3.1 Template for Senselet
Senselet is the core of Dandelion that abstracts in-sensor
data processing. As shown in the object-oriented skeleton
code in Figure 4, a senselet is a subclass that inherits the
virtual base SenseletBase. SenseletBase declares a concise
interface as a set of virtual methods for concrete senselets.
For example, the senselet class overrides OnCreate() to in-
itialize its states, and overrides OnData() to receive new
sensor data for processing. Compared to various sensor na-
tive programming abstractions mentioned in Section 2.1, the

class MySenselet : public SenseletBase {
public:
 // App-specific initialization
 void OnCreate() {...};
 // App-specific finalization
 void OnDestroy() {...};

 // Receive and process new sensor data
 void OnData(data) {...};
private:
 // All senselet states are private variables
}

// ... in the main body code ...
LoadSenseletInstance(MySenselet);

Figure 4. The skeleton code of a Senselet class

class MySensorListener : SensorListener {
public:
 // called when the processing starts
 OnCreate() { ... };
 // called when the processing stops
 OnDestroy() { ... };
 // called when new sensor data is acquired
 OnNewData(sensor_id, data) { ... };
private:
 // private states as variables
}

Figure 3. Skeleton code for data processing on smartphone.
This style for sensor data processing shown here is widely
adopted by smartphone programming frameworks, includ-
ing Android, iPhone OS, Symbian S60, and Maemo

senselet abstraction has three distinct features: 1) a just-fit
interface for data processing, 2) smartphone style program-
ming (very close to the skeleton code shown in Figure 3),
and 3) platform-independence.
SenseletBase contains the template code written with sensor
native programming abstraction, while leaving the imple-
mentation of the actual data processing to senselets. Essen-
tially, a SenseletBase class plays two important roles. First,
it acts as an adaptor between the senselet abstraction and the
sensor native programming abstraction. Second, it hides
low-level platform configurations, e.g. hardware parameters
from the developer.
Since the implementation of a SenseletBase is platform-
specific, it is the sensor vendor’s responsibility to provide
SenseletBase as a basic library. When a Dandelion applica-
tion is being installed on a smartphone, the developer-
provided senselet code is linked with vendor-provided Sen-
seletBase to generate the final senselet executable, as will be
further addressed in Section 3.3.
Example: We use a simple example in Figure 5 to illustrate
how SenseletBase works as a template. Suppose that the
sensor platform requires any of its software modules to be
coded as an event loop. SenseletBase populates such an
event loop in the function _EventLoop(), with dispatching
events to the proper methods implemented by a concrete
Senselet class (e.g. OnStart and OnData).
3.2 Platform Services
Dandelion abstracts platform resource as a set of platform
services, which resemble system calls in traditional OS. In
designing platform services, we seek to strike a balance be-
tween their portability and the flexibility of programming;
more platform services allow the developer to program
senselet in a more flexible way, but they may be supported
by fewer platforms.
By examining data processing in a wide range of body sen-
sor applications, both in the market and reported in litera-

ture, we identify three core platform services for senselets,
as follows.
Acquire sensor readings. Get raw sensor readings, using
either pull mode, where senselet actively polls for readings:

data = PollSensorData(sensor_id);
or push mode, where the senselet requests runtime to pe-
riodically deliver readings, with:

RegisterSensorData(sensor_id, rate);
Sensor runtime delivers new reading to the senselet by in-
voking its OnData() method.
Timer. A senselet may need to process data with timing,
periodically or aperiodically. A senselet can register a timer
with:

timer_id = RegisterTimer (interval)
Consequently, sensor runtime will invoke its OnTimer() me-
thod at the desired interval. The senselet can also use UnRe-
gisterTimer(timer_id) to cancel a registered timer.
Memory management. A senselet can use Malloc() to re-
quest dynamic memory for storing intermediate processing
results, and use Free() to release the memory after use.
Finally, we note that new services can be added as they be-
come critical to data processing and widely supported by
sensor platforms, e.g. storage.
3.3 Remote Method Invocations
A senselet executes on a body sensor, while the main appli-
cation body still runs on the smartphone. However, to logi-
cally work as an integral application, they need 1) transfer
data to each other, e.g. a senselet passes preliminary results
to the main body for further processing, and 2) transfer con-
trol flow to each other, e.g. the main body commands to

(a)

(b)

Figure 5. The internals of an example RMI PassData(). (a)
The stub compiler generates both caller and callee stubs
that translate the RMI into messages. Both main body and
senselet can be caller or callee. (b) During the RMI, the
caller transfers the data and its control flow to the callee

Data
IDL Stub

Compiler

Programmer

Message
Callee stub

PassData(Data)
{...}

Callee code

Body Sensor Application

Caller code

Caller stub

Call PassData(Data)

Dandelion
Runtime

Caller
stub

Caller
code

Callee
stub

Callee
code

Call
PassData
(Data)

Message

PassData(Data)
 {...}

Data
Data

Data

Message

SenseletBase::_EventLoop (event_t *event){
 switch(event->type){
 case EVENT_INIT:
 //...platform-dependent initialization
 OnCreate();
 return;
 case EVENT_DATA:
 //...decode data from the event
 OnData(data);
 return;
 case EVENT_RMI:
 //...call corresponding RMI stubs
 return;
 }
}
//Assume MySenselet points to Senselet instance
// Start an OS task with the event loop
start_task(MySenselet->_EventLoop);

Figure 6. Pseudo code of a simplified SenseletBase, as a tem-
plate to wrap an event loop skeleton for Senselet class

change the sampling rate used by a senselet and waits for a
confirmation from it. Rather than require developers to
hand-code integration with messages, Dandelion employs
remote method invocation as the solution to address both
requirements.
RMI is a cross-platform communication mechanism widely
used in distributed systems such as Network File System.
From the perspective of a developer, an RMI that happens
between a senselet and the main body in Dandelion, appears
to be very similar to a local call. All a developer needs to do
is to specify the name and types of parameters used by the
remote method, using Interface Description Language (IDL)
[16]. All RMIs in Dandelion are synchronous, i.e. the caller
returns after the remote method finishes execution.
We provide a stub compiler that automatically generates the
implementation of two stub procedures for a RMI, based on
its IDL description. One stub is used by the caller to issue
the RMI, with the data objects to transfer as method parame-
ters. When the caller stub is invoked, it creates a message
and marshals method parameters into the message payload.
The other stub procedure is used by the callee to un-marshal
the parameters from the received message and actually calls
the remote method. Figure 6(a) illustrates the roles of the
programmer, stub compiler, and runtime in implementing a
RMI.
We choose RMI for integration because of two reasons.
First, it is a widely used way for separated execution con-
texts to interact with each other. Second, IDL is already an
essential part in smartphone development, e.g. AIDL in An-
droid [17], XML for dbus in Maemo [18]. Recent proposal
to offload execution from mobile devices also leverage IDL-
based methods to serialize passed parameters [19].
Shared memory is an alternative solution for data transfer:
smartphone and sensor runtimes collaboratively implement
a memory coherence protocol by exchanging messages.
With this scheme, senselets and the main body can access
shared variables. While it may be desirable to support
shared memory for smartphone developers who may be un-
familiar with distributed programming, its overhead is sig-
nificant for body sensors, both in terms of implementation
complexity and communication (i.e. frequently sending
small memory updates over wireless link).
Example: We use a simple but general example to show
how RMI transfers data and control flow. In this example,
the senselet calls a remote method defined in the main body,
named PassData, to transfer processed data. The program-
mer describes the following method interface using XML-
style IDL [18]:

 <method name=”PassData”>

 <arg type=”ai” name=”Data” direction=”in” />

</method>

The IDL description above indicates that the method Pass-
Data carries one parameter Data, which is an integer array

(‘ai’). At compile time, our stub compiler generates the
caller stub for the senselet:

 void PassData (int *Data, int actual_len) {...};

The senselet code simply calls PassData()provided by the
caller stub to send the integer array, and the main body ac-
cordingly implements the method PassData()to receive the
array. It is worth noting that during the RMI, the senselet
code in fact transfers its control flow to the main body (as
shown in Figure 6(b)). Therefore, upon returning from
PassData(), the senselet is ensured that the execution of
remote method in the main body is finished. This guarantee
is especially important when the main body uses RMI to
configure the senselet, e.g. change the data sampling rate.
3.4 Senselet Executable Generation
The challenge of generating senselet executable comes from
our design goal of platform transparency: platforms may
have various Instruction Set Architectures (ISAs) that de-
velopers may not know about. One possible solution to
bridge the ISA gap is Virtual Machine (VM). With the same
VM installed on all target platforms, a senselet can be com-
piled into VM byte code and then interpreted by a VM dur-
ing execution. Although light-weight VMs [20] have been
developed for low-power processors to perform simple con-
trol tasks, the overhead of VM interpretation is still high for
intensive data processing (10 times or more compared to
native binary [21]).
Therefore, Dandelion adopts the two-phase compilation
technique that has been used for other heterogeneous distri-
buted systems such as [22]. A developer compiles a senselet
into intermediate representation (IR) before distribution
(first phase). When a smartphone user installs the distribu-
tion (second phase) on her phone, the corresponding cross-
compiler for her sensor translates the IR into sensor native
binary. This technique relieves the application developer
from worrying about various sensor ISAs while achieving
the high performance of native execution.

4. Execution Support
The architecture of a running Dandelion system is shown in
Figure 7. Dandelion employs a distributed middle layer or
runtime to manage the execution and communication of

Figure 7. The overview of Dandelion runtime architecture

Dandelion runtime

Main Body
Smartphone

Wireless interconnect

Smartphone platform

......
Sensors

Senselet

Dandelion runtime

Sensor platform

Senselet

Dandelion runtime

Sensor platform

senselets. It also provides resource exception to support
application-specific handling of resource depletion during
senselet execution.
4.1 Dandelion Runtime System
The Dandelion runtime, as the core of execution support,
consists of multiple component runtimes: one smartphone
runtime and one or more sensor runtimes. Component run-
times communicate with each other through messages. They
employ a common message format to serve both RMIs in
application code and runtime management functions. While
messaging is the building block of Dandelion communica-
tion, it is only visible inside the runtime system and totally
transparent to the application.
4.1.1 Smartphone Runtime
As the coordinator of the runtime system, the smartphone
runtime serves three key management functions. First, when
a body sensor application starts, the smartphone runtime
discovers sensors by querying sensor runtimes. Second, the
smartphone runtime manages the network connections be-
tween the smartphone and sensors according to the applica-
tion requirement. It does so with existing networking capa-
bility, e.g. Bluetooth Serial Port Profile. Finally, the smart-
phone runtime sends senselet native binaries to the corres-
ponding sensor runtimes for execution and stops senselet
execution under the application’s request. Again, the com-
munication between the smartphone runtime and the sensor
runtimes is based on messages described above.
4.1.2 Sensor Runtime
To minimize the complexity and execution overhead of the
sensor software stack, we opt a minimalist design for sensor
runtime. A sensor runtime provides two core functions: 1) it
implements the very small set of platform services for
senselets, as described in Section 3.2 and 2) it fulfills man-
agement commands from the smartphone runtime. For func-
tion 2, to further reduce the complexity of sensor runtime,
we carefully leave most functions to smartphone runtime.
For instance, to load a new senselet for execution, we per-
form the dynamic linking of the executable on the smart-
phone instead of within the sensor runtime [21], so that the
sensor runtime only needs to receive and copy the linked
executable into sensor memory.
With this minimalist design, the sensor runtime is very
lightweight in terms of memory and processor usage. Fur-
thermore, the sensor runtime only requires a minimal set of
primitives, namely interrupt handling, digitalized sensor
output, and the configurable timer, from the underlying plat-
form. As a result, the Dandelion sensor runtime can be built
on top of various embedded OSes, e.g. uC/OSII, Mantis,
TinyOS, SOS, Contiki, and with diverse sensor hardware,
e.g. MSP430, ARM7, AVR. We will evaluate the sensor
runtime design in Section 6.

4.2 Senselet Resource Exception
Due to the highly limited computing resources on body sen-
sors, a senselet is likely to run out of resources. Unfortu-
nately, it can be hard for developers to match senselet re-
source demand with available platform resources. On one
hand, developers may have limited knowledge about target
platforms; on the other hand, senselet resource demands
may vary significantly during its execution (e.g. changing
sampling rate with human activity).
Dandelion supports resource exception to let developers
gracefully deal with such resource mismatch during execu-
tion, in an application-specific manner. We define two types
of resource exceptions for senselet:
• TimeException is raised when running out of processor

time: e.g. senselet fails to process the sensor data faster
than the data is supplied;

• MemException is raised when running out of memory:
e.g. the stack is going to overflow.

The sensor runtime monitors platform resource utilization in
a platform-specific way, e.g. read processor utilization from
the scheduler, and raises exceptions by invoking corres-
ponding exception handlers in senselet. Resource exception
provides enough flexibility for application code to adapt to
constrained sensor resource. For instance, when TimeEx-
ception is raised, senselet code may lower its sampling rate
and notify the main body with a RMI.

5. Prototype Realization
We have built a Dandelion prototype using Nokia N900, a
smartphone based on Maemo Linux, and Rice Orbit, a mul-
ti-purpose sensor platform with a TI MSP430 microcontrol-
ler and a Bluetooth interface. Rice Orbit also has a tri-axis
accelerometer that can be utilized for human activity moni-
toring, and an amplified analog input that can be used to
sample Electrocardiogram (EKG) signals. Rice Orbit works
with a variety of embedded OSes that support TI MSP430,
including µC/OS-II, SOS, Contiki, and TinyOS.
Smartphone-side software
We implement the smartphone runtime using around 1000
lines of C++ code and link it as a static library with the main
body. The smartphone runtime only requires network capa-
bility from the smartphone platform, therefore it is highly
portable and can therefore be realized with all current

Figure 8. The Dandelion prototype hardware, based on Nokia
N900 smartphone (left) and Rice Orbit body sensor (right)

smartphone platforms we are aware of, including Maemo,
iPhone, Android, and S60.
We have built a stub compiler that takes IDL description to
generate RMI stub source code for both the main body and
senselets. We implement such stub compiler with around
500 lines of Python code, by referring to dbus implementa-
tion [23].
We have validated the feasibility of two-phase compilation
by using LLVM-msp430, a high-efficient compiler infra-
structure with an experimental MSP430 backend, to suc-
cessfully build simple senselets with two phases. However,
since the MSP430 backend is under heavy development, in
the evaluation we still choose MSPGCC, the widely-used
MSP430 port of gcc, as the C/C++ compiler kit to produce
senselet binaries. As LLVM-msp430 matures, we expect it
to produce production-quality MSP430 binary with two-
phase compilation.
Sensor-side software
We implement the Dandelion sensor runtime on top of
µC/OS-II [24], a popular, lean OS for resource-constrained
embedded systems. Since µC/OS-II provides no direct sup-
port for any of three platform service, we only rely on it for
multitasking and implement all platform services inside
sensor runtime. We use a µC/OS-II task to implement sen-
sor runtime management functions, and use another task to
execute senselet code (with a fixed 64 byte stack).
The sensor runtime is highly portable, thanks to its minimal-
ist design. Its two major components, platform services and
management functions can be similarly realized on top of
most embedded OSes. In many cases, the platform services
are just thin wrappers over existing OS support. It is worth
noting that protothreads [11] can be used to implement
blocking in synchronous RMI with a negligible overhead of
2 bytes, which is useful for purely event-driven OSes that

lack direct support of blocking. What’s more, even without
an underlying OS, it is possible to build sensor runtime on
bare-metal with the following four hardware primitives: 1)
hardware interrupts, 2) access to digitalized sensor data, e.g.
through a built-in ADC or a digital interface with the sens-
ing apparatus, 3) a configurable timer, and 4) a bi-
directional, interrupt-enabled communication port that
enables network capability. Such hardware primitives are
available on most 16-bit and even some 8-bit microcontrol-
lers.

6. Evaluation
To evaluate if Dandelion achieves its design goal, we devel-
op in-sensor data processing from three real-world smart-
phone health applications and in three alternative styles: 1)
the bare-bone style, without embedded OS or Dandelion; 2)
the embedded-OS style, implemented with an event loop; 3)
the Dandelion style, implemented as senselets. We compare
the developers’ burdens in coding in these three styles by
examining the resulted source code. To understand the cost
in supporting transparency, we also experimentally quantify
the memory and execution overhead of senselet and Dande-
lion runtime.
6.1 Benchmark Health Applications
We use the following three real-world applications in the
benchmark:
FallDectector uses a wearable accelerometer to detect fall
accidents occurred to the user and raises an alert to the main
body accordingly. The main body reacts by sending out an
SMS to registered phone numbers..
The EKG application [25] monitors the user’s heart rate by
calculating the average RR interval in the real-time EKG
trace. The main body can retrieve the calculated heart rate,
or raw EKG traces for further analysis.
Pedometer [26] uses a shoe-mounted accelerometer to count
user steps and recognize walking distance, and further cal-
culates walking speed and consumed calorie. The main body
regulates the thresholds for steps, speed, or consumed calo-
rie, all calculated in the senselet. The senselet in turn noti-
fies the main body when any quantity exceeds its threshold.
The main body can also poll these quantities.
6.2 Source Code Examination
We use FallDetector as the simplest example to compare
developer’s burdens in three programming styles. The data
processing is simple: measure the acceleration energy (cal-
culated as the magnitude of X, Y, Z readings) and apply a
simple low-pass filter to the energy trace. If the filtered
energy exceeds a pre-defined threshold, an alert is raised to
the main body.
The FallDetector senselet is shown in Figure 9, which con-
sists of only 17 lines of C++ code. The OnCreate() method
requests periodic accelerometer readings at 50 Hz. Later on,
OnData()is invoked by sensor runtime when new reading is
acquired. OnData() detects fall accident and raises the alert

class SenseletFall : public SenseletBase {
public:
 SenseletFall () {_avg_energy = 0;};

 void OnCreate() {RegisterSensorData(ACCEL, 50);};

 void OnData(uint8_t *readings, uint16_t len) {
 uint16_t energy = readings[0]*readings[0] + \
 readings[1]*readings[1] + \
 readings[2]*readings[2];
 //do a simple low-pass filtering
 _avg_energy = _avg_energy / 2 + energy / 2;

 // detect fall accident with the filtered energy
 if (_avg_energy > THRESHOLD) {
 theMainBody.FallAlert(); //RMI
 }
 }

 void OnDestroy() {UnRegisterSensorData(ACCEL);};

private:
 uint16_t _avg_energy;
};

Figure 9. An implementation of FallDetector with senselet

by invoking the remote method FallAlert() of the main body.
Senselet abstraction relieves the developer from dealing
with hardware and communication details.
For comparison, we also write FallDetector in the form of a
main event loop, which is used for tasks with many embed-
ded OSes, e.g. SOS, Contiki, and µC/OS-II. In developing
the code, we favorably assume that the OS provides all peri-
pheral drivers, event queues, and supports blocking, which
may not be true for all. Even with this favorable assumption,
the same data processing takes three times as many lines of
code. The bare-metal implementation is even more verbose.
While it also implements a main loop driven by several
hardware interrupts to perform processing and communica-
tion, it has to deal all low-level, hardware-related operations,
e.g. manually triggering the power state transitions.
The same observations also apply to other two benchmark
applications (source statistics in Table 1). As reflected in the
numbers of source lines, without Dandelion support, com-
plex data processing and communication requires more pro-
gramming efforts; what is even worse, the resulting code is
non-portable and error-prone.
By further comparing the source code, we can see Dande-
lion saves considerable development efforts in three aspects.

First, senselet only exposes to developers a very concise
interface necessary for in-sensor data processing. The other
two direct sensor programming styles put extra burden on
developers: populate a main loop woven with the data
processing and drive the loop with (sometimes low-level)
events.
Second, the use of RMI facilitates integration and relieves
the developer from dealing with smartphone-sensor com-
munication. Compared to issuing a RMI with a single line in
senselet, the other two styles need to spend 30-50 lines of
code to manually construct a message and send through the
wireless link, when accounting for link reliability. Addition-
ally, the bare-bone code has to manage the power state of
Bluetooth interface.
Third, platform independence makes senselet code portable.
For example, to periodically acquire sensor readings; em-
bedded OS style requires using timer event to drive the ac-
quisition, while the bare-bone style additionally requires
manually configure ADC. In contrast, Dandelion sensor
reading service covers these differences.

6.3 Overhead Measurements
We measure the overhead of Dandelion framework in terms
of both memory consumption and processor cycle consump-
tion. In the measurement, we compiled all code using
MSPGCC version 3.2.3, with optimization level -O2. We
are aware of that the overhead is affected by the choice of
the underlying OS: complete support for runtime functional-
ities from OS can largely simplify sensor runtime imple-
mentation and therefore reduces its overhead. In the evalua-
tion, we estimate the upper limit of runtime overhead by
using µC/OS-II merely for multitasking, and implement
most sensor runtime functionalities from scratch, instead of
choosing many other embedded OSes with existing support
for peripheral drivers, timer, or communication.
6.3.1 Memory Overhead
We break down the memory overhead of Dandelion into
two parts: 1) that of sensor runtime, and 2) that of senselet
executable, including template and RMI stubs, as shown in
Table 2 and Table 3.
The runtime memory overhead, due to the minimalist design,
is a small constant: 180 bytes of RAM and 1746 bytes of
ROM. For the second part, in a single senselet executable,
template takes a small, fixed amount memory. Additionally,
each RMI stub only uses 50-100 bytes ROM. For a typical
sensor controller, the TI MSP430F161 (10KB RAM, 48KB
ROM) that is widely used in various sensors such as Rice
Orbit and Shimmer[27], the fixed overhead is less than 5%
of the whole memory.
The measurements have two implications. First, the small
overall memory overhead allows Dandelion be implemented
with many resource-constrained sensors. Second, the com-
pact template and RMI stubs incur small energy overhead
when a senselet executable is transmitted over wireless link.

Table 1. The source lines of code in developing in-sensor
data processing, with different programming styles

Style FallDetector EKG Pedometer
Dandelion 17 96 158
Embedded OS 72 146 248
Bare-bone 84 194 296

Table 2. Memory breakdown of sensor runtime, in byte
Module RAM ROM
Sensor reading service 12 144
Timer service 36 250
Memory management service 4 248
Message communication 64 286
Management functions 64 818
Total 180 1746

Table 3. Memory overhead of senselet executables, in byte
and the percentage of the whole sensor memory. Assume
whole memory of 10KB RAM and 48KB ROM

Code part FallDetector EKG Pedometer
RAM ROM RAM ROM RAM ROM

Template 64 324 64 324 64 324
RMI stubs 0 54 0 56 0 210
Total 64 378 64 380 64 534
% of whole 0.6% 0.8% 0.7% 0.8% 0.7% 1.1%

6.3.2 Execution Overhead

To gain insight into the execution overhead of a senselet, we
first measure execution overhead in common operations of
sensor runtime. Note that we do not include cycles spent on
sending and receiving message bytes into message RX/TX
overhead. Further, the overhead of an RMI varies with the
number and types of its parameters, and 300 cycles are typi-
cal for passing an integer array. Results in Table 4 show that
the sensor runtime incurs small execution overhead; with a
typical processor clock rate of 4MHz, even the most costly
operation, message RX, takes less than 250 us.
To estimate the execution overhead in long-run, we further
measure the performance of the most common execution
path in senselets. Since in all three senselets data processing
is driven by periodic sampling, we define such path as data
processing performed in each sampling period (without RMI
involved), e.g. EKG senselet reads in new data and com-
putes to determine if it is in R wave. The results in Table 5
show that, even as the data processing becomes intensive,
Dandelion execution overhead remains small (around 250
cycles). Even with the most challenging EKG benchmark,
where data processing consumes around 3900 cycles (~50%
of processor time) in every 2 ms sampling period, the execu-
tion overhead only takes ~3% processor time. We have ob-
served that the execution overhead comes from timer notifi-
cation, sensor reading, and the template code.

7. Related work
Dandelion allows a smartphone developer to use body sen-
sors in her program without directly programming the sen-
sors or dealing with the sensor hardware/software. It is re-
lated to three seemingly disparate groups of work.
The first group provides programming frameworks to body
sensor networks, including MobiCare [28], CodeBlue [29],
and SPINE [6]. Some of them facilitate application devel-
opment by providing pre-defined functions in sensors. For
example, SPINE provides a portable library for in-sensor
signal processing. While they are effective for particular
applications that use such pre-defined functions, compared
to Dandelion, they have very limited sensor programmabili-
ty, as discussed in Section 2.1.
The second group of related work addresses the program-
ming models of wireless sensor networks (WSN) in general.
Solutions such as nesC [12] and protothreads [11] provide
node-level programming abstractions. Macro-programming
[13-15] enables developing WSN applications by describing
the network-level behavior. While successful for compli-
cated WSN applications, such programming styles signifi-
cantly differ from those used in smartphone application de-
velopment, making it is difficult for smartphone developers
to adopt them. In contrast, Dandelion leverages the simplici-
ty of smartphone-centered body sensor networks and focus-
es on supporting in-sensor data processing tasks. With this
trade-off, Dandelion is able to provide transparency in pro-
gramming style.

Finally, the third group of related work employs heteroge-
neous distributed systems and support different levels of
programming transparency. In most cases, e.g. [30-32], the
programmer has to program each platform in the system
directly without any transparency. Some systems support
programming transparency with an unified OS abstraction
or distributed runtime system, mostly based on a virtual-
machine approach [22] to hide ISA variances. This approach,
however, proves to be inefficient on resource-constrained
sensors [20, 21]. In contrast, Dandelion achieves transpa-
rency by limiting the senselet functions to data processing
and by introducing an extra compilation phase to produce
sensor native binaries during application installation.

8. Conclusion
We present Dandelion, a novel programming framework for
phone-centered wireless body sensor applications. Dande-
lion allows developers to easily write data processing code
to be executed on sensors, in a programming style similar to
traditional smartphone development. With the minimalist
design of the runtime system, Dandelion incurs very small
overhead and therefore can be easily ported to various re-
source-constrained sensor platforms. We believe that by
enabling smartphone developers to easily write body sensor
code, Dandelion supports a healthy ecosystem that promotes
the interests of all involved parties: sensor vendors, smart-
phone developers, and users.

Acknowledgements
The work was supported in part by NSF Grants #0713249,
#0751173, #0803556, and #0923479, and by the Texas In-
struments Leadership University program. The authors were
also grateful to the anonymous reviewers whose construc-
tive comments help improve the final version.

Table 4. Execution overhead in common sensor runtime
operations, in processor cycles

Operation #Cycles Operations # Cycles
Timer notification 53 Sensor reading 130-168
RMI 50-300 Load senselet 716
Message RX 924 Message TX 720
Malloc 239 Free 120

Table 5. Execution overhead in the most common data
processing path, in processor cycles and the percentage
of processor time in each sampling period. FallDetector
and Pedometer acquire sensor data at 50Hz, while EKG
does at 512Hz. Assume a clock rate of 4MHz

Execution overhead FallDetector EKG Pedometer
Cycles 251 221 251
% per sampling period 0.3% 3% 0.3%

References
[1] R. C. Hodgin, "60% of world's population now has cell phone,

highest ever," in TG Daily, 2009.
[2] S. Patel, J. Kientz, G. Hayes, S. Bhat, and G. Abowd, "Farther

than you may think: An empirical investigation of the proxim-
ity of users to their mobile phones," in Proc. Ubicomp, 2006,
pp. 123-140.

[3] L. Zhong, M. Sinclair, and R. Bittner, "A phone-centered
body sensor network platform: cost, energy efficiency & user
interface," in Proc. Int. Wrkshp. Wearable and Implantable
Body Sensor Networks, 2006.

[4] Apple, "Nike + iPod Sport Kit," 2010.
[5] S. Kato, "Wearable Health Monitoring Sensor Debuts in Jap-

anese Market," 2010.
[6] P. Kuryloski, A. Giani, R. Giannantonio, K. Gilani, R. Gravi-

na, V.-P. Seppa, E. Seto, V. Shia, C. Wang, P. Yan, A. Y.
Yang, J. Hyttinen, S. Sastry, S. Wicker, and R. Bajcsy, "Dex-
terNet: An Open Platform for Heterogeneous Body Sensor
Networks and its Applications," in Proceedings of the 2009
Sixth International Workshop on Wearable and Implantable
Body Sensor Networks: IEEE Computer Society, 2009.

[7] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan, B.
Greenstein, A. Joki, D. Estrin, and E. Kohler, "The Tenet ar-
chitecture for tiered sensor networks," in Proceedings of the
4th international conference on Embedded networked sensor
systems Boulder, Colorado, USA: ACM, 2006.

[8] D. Gay, P. Levis, and D. Culler, "Software design patterns for
TinyOS," ACM Trans. Embed. Comput. Syst., vol. 6, p. 22,
2007.

[9] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
"A dynamic operating system for sensor nodes," in Proceed-
ings of the 3rd international conference on Mobile systems,
applications, and services Seattle, Washington: ACM, 2005.

[10] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M.
Welsh, "Resource aware programming in the Pixie OS," in
Proc. ACM Conf. Embedded Networked Sensor Systems (Sen-
Sys) Raleigh, NC: ACM, 2008, pp. 211-224.

[11] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, "Protothreads:
simplifying event-driven programming of memory-
constrained embedded systems," in Proceedings of the 4th in-
ternational conference on Embedded networked sensor sys-
tems Boulder, Colorado, USA: ACM, 2006.

[12] D. Gay, P. Levis, R. v. Behren, M. Welsh, E. Brewer, and D.
Culler, "The nesC language: A holistic approach to networked
embedded systems," ACM SIGPLAN Notices, vol. 38, pp. 1-
11, 2003.

[13] D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein, "Entirely
declarative sensor network systems," in Proceedings of the
32nd international conference on Very large data bases Seoul,
Korea: VLDB Endowment, 2006.

[14] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, "Re-
liable and efficient programming abstractions for wireless
sensor networks," in Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implemen-
tation San Diego, California, USA: ACM, 2007.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
"TAG: a Tiny AGgregation service for ad-hoc sensor net-
works," SIGOPS Oper. Syst. Rev., vol. 36, pp. 131-146, 2002.

[16] A. S. Tanenbaum and M. V. Steen, Distributed Systems:
Principles and Paradigms: Prentice Hall, 2007.

[17] Google, "Designing a Remote Interface Using AIDL," 2010.
[18] Maemo.org, "dbus guide for Maemo," 2010.
[19] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl, "MAUI: Making Smart-
phones Last Longer with Code Offload," in Proc. ACM Mo-
biSys, 2010.

[20] P. Levis and D. Culler, "Maté: a tiny virtual machine for sen-
sor networks," in Proc. ACM Int. Conf. Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS) San Jose, CA, 2002, pp. 85-95.

[21] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, "Run-time
dynamic linking for reprogramming wireless sensor net-
works," in Proceedings of the 4th international conference on
Embedded networked sensor systems Boulder, Colorado, USA:
ACM, 2006.

[22] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and
G. Hunt, "Helios: heterogeneous multiprocessing with satel-
lite kernels," in Proc. ACM SIGOPS Symp. Operating Systems
Principles (SOSP) Big Sky, Montana, USA: ACM, 2009.

[23] freedesktop.org, "Software/dbus," 2010.
[24] J. J. Labrosse, MicroC OS II: The Real Time Kernel: Newnes,

2002.
[25] M. Raju, "TI Application Notes: Heart-Rate and EKG Moni-

tor Using the MSP430FG439," 2007.
[26] J. Scarlett, "Analog Devices Application Notes: Enhancing

the Performance of Pedometers Using a Single Accelerometer
" 2007.

[27] "Shimmer - Wireless Sensor Platform for Wearable Applica-
tions," Shimmer Research, 2010.

[28] R. Chakravorty, "A Programmable Service Architecture for
Mobile Medical Care," in Proceedings of the 4th annual IEEE
international conference on Pervasive Computing and Com-
munications Workshops: IEEE Computer Society, 2006.

[29] D. Malan, T. Fulford-jones, M. Welsh, and S. Moulton, "Co-
deBlue: An ad hoc sensor network infrastructure for emergen-
cy medical care," in International Workshop on Wearable and
Implantable Body Sensor Networks, 2004.

[30] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R.
Gupta, "Somniloquy: augmenting network interfaces to re-
duce PC energy usage," in Proc. USENIX Symp. Networked
Systems Design and Implementation (NSDI) Boston, MA,
2009.

[31] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins, "Tur-
ducken: hierarchical power management for mobile devices,"
in Proc. ACM/USENIX Int. Conf. Mobile Systems, Applica-
tions, and Services (MobiSys) Seattle, WA, 2005, pp. 261-274.

[32] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and P.
Wyckoff, "Tapping into the fountain of CPUs: on operating
system support for programmable devices," in Proceedings of
the 13th international conference on Architectural support for
programming languages and operating systems Seattle, WA,
USA: ACM, 2008.

	Abstract
	1. Introduction
	2. Motivation
	2.1 The Gap between Two Programming Styles
	2.2 Overview of Dandelion

	3. Programming Support
	3.1 Template for Senselet
	Platform Services
	3.3 Remote Method Invocations
	3.4 Senselet Executable Generation

	4. Execution Support
	4.1 Dandelion Runtime System
	4.1.1 Smartphone Runtime
	4.1.2 Sensor Runtime

	4.2 Senselet Resource Exception

	5. Prototype Realization
	6. Evaluation
	6.1 Benchmark Health Applications
	6.2 Source Code Examination
	6.3 Overhead Measurements
	6.3.1 Memory Overhead
	We break down the memory overhead of Dandelion into two parts: 1) that of sensor runtime, and 2) that of senselet executable, including template and RMI stubs, as shown in Table 2 and Table 3.
	6.3.2 Execution Overhead

	7. Related work
	8. Conclusion
	Acknowledgements
	References

