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Abstract 
Many innovative mobile health applications can be enabled 
by augmenting wireless body sensors to mobile phones, e.g. 
monitoring personal fitness with on-body accelerometer and 
EKG sensors. However, it is difficult for the majority of 
smartphone developers to program wireless body sensors 
directly; current sensor nodes require developers to master 
node-level programming, implement the communication 
between the smartphone and sensors, and even learn new 
languages. The large gap between existing programming 
styles for smartphones and sensors prevents body sensors 
from being widely adopted by smartphone applications, 
despite the burgeoning Apple App Store and Android Mar-
ket.  
To bridge this programming gap, we present Dandelion1, a 
novel framework for developing wireless body sensor appli-
cations on smartphones. Dandelion provides three major 
benefits: 1) platform-agnostic programming abstraction for 
in-sensor data processing, called senselet, 2) transparent 
integration of senselets and the smartphone code, and 3) 
platform-independent development and distribution of 
senselets. 
We provide an implementation of Dandelion on the Maemo 
Linux smartphone platform and the Rice Orbit body sensor 
platform. We evaluate Dandelion by implementing real-
world applications, and show that Dandelion effectively 
eliminates the programming gap and significantly reduces 
the development efforts. We further show that Dandelion 
incurs a very small overhead; in total less than 5% of the 
memory capacity and less than 3% of the processor time of 
a typical ultra low power sensor. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – distributed applications 

General Terms 
Design, Experimentation, Performance 

1. Introduction 
Six in ten people (60%) of world’s population have mobile 
phones [1]. A significant and growing percentage of mobile 
phones are smartphones that enjoy mobile Internet, power-
ful processor, and massive storage. Because mobile users 
usually keep their phones within the arm’s reach [2], many 
have envisioned that smartphone-like devices serve as the 
personal hub for body sensors, bridging the sensors with 
human users and the Internet [3]. Furthermore, wireless 
body sensors naturally extend the “sense” of a smartphone 
and open doors to new applications, especially in healthcare. 
For example, wireless body sensors can measure physical 
activity, collect physiological data, and even infer social 
context. Such information provides key insights into the 
health and lifestyle of the user and can potentially help the 
user make day-to-day in situ decisions that have an impact 
on their health. Numerous research prototypes have been 
reported in literature, and there has been a few successful 
commercial health applications in recent years, e.g. the 
Nike+iPod Sport Kit [4] and the WIN human recorder [5]. 
Even so, only a few of the millions of third-party smart-
phone applications employ body sensors, despite the com-
mercial availability of Bluetooth body sensors. We contri-
bute the lack of body-sensor applications for smartphones to 
the disparity between programming a smartphone and pro-
gramming wireless sensors, which requires smartphone de-
velopers to directly program a sensor node with a new pro-
gramming language.  
Toward addressing this challenge, we seek to enable smart-
phone developers to easily implement data processing that 
executes in wireless sensors, without learning the particular 
programming style coupled with the target sensor platform. 
Our solution, called Dandelion, is a framework combining 
both programming support and execution support for in-
sensor data processing. The key features of Dandelion are: 
• A platform-agnostic, smartphone-style programming 

abstraction called senselet; 
• A mechanism for transparently integrating senselets 

with the smartphone application; and 
• A platform-independent mechanism for distributing and 

deploying senselet executables. 
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remind the authors of wireless body sensors 



 

With these features, Dandelion allows smartphone develop-
ers to program in-sensor data processing using the smart-
phone programming style in senselets. Dandelion provides 
the transparency in two key aspects: programming style 
transparency, which makes developing senselets very close 
to developing traditional smartphone applications; target 
platform transparency, which makes the development, dis-
tribution, and deployment of senselets independent of any 
particular sensor platform. Throughout this paper, we use 
the term sensor platform, or simply platform, to refer to the 
specific combination of hardware and software of a sensor 
node, unless specified otherwise. 
We prototype Dandelion with the Maemo Linux smartphone 
platform, used by Nokia N900 and N810, and the Rice Orbit 
body sensor platform. We experimentally evaluate our pro-
totype with real-world applications including Fall-detector, 
Pedometer, and EKG monitoring. Our evaluations show that 
the Dandelion framework significantly reduces the applica-
tion developers’ burden comparing with existing methods of 
directly programming sensors. Furthermore, Dandelion in-
curs an overhead of less than 5% of the memory capacity 
and less than 3% of the processor time of a typical low-
power body sensor. 
Dandelion supports a healthy ecosystem that promotes the 
interests of all three parties involved in body sensor applica-
tions: the sensor vendors, the smartphone developers, and 
the end users, as illustrated in Figure 1. 1) A sensor vendor 
provides lightweight Dandelion support for its sensor. Be-
cause its sensor can be easily programmed by any develop-
er, the vendor will see more smartphone applications for its 
sensors. 2) A smartphone developer only needs to program 
senselets as part of the smartphone application without 
learning the specifics of any particular sensor platform or 
programming style. Because such applications can transpa-
rently work with any sensor that has Dandelion support, the 
developer benefits by reaching a large number of users who 
may choose different sensors. 3) Finally, smartphone users 
can benefit from a more flexible choice of sensors for their 
intended applications, as long as the sensors have the Dan-
delion support. Consequently, users will also benefit from a 
wider range of emerging applications and sensors.  
The rest of the paper is organized as follows. We analyze 
the challenges towards the development of smartphone body 
sensor applications and motivate Dandelion design in Sec-
tion 2. We then present the programming and execution 

support of Dandelion in Sections 3 and 4, respectively. We 
present our prototype based on a Nokia N900 smartphone 
and Rice Orbit sensors in Section 5, and evaluate Dandelion 
in Section 6. We discuss related work in Section 7 and final-
ly conclude in Section 8. 

2. Motivation 
Among millions of smartphone applications, only a few 
employ body sensors. In this section we first highlight the 
challenges faced by smartphone developers wanting to use 
body sensors, and then motivate the design of Dandelion by 
showing the limitations of existing solutions. 
2.1 The Gap between Two Programming Styles 
Figure 2 shows the tension between system energy efficien-
cy and ease of body sensor application development. At one 
extreme, (ease of development), the developer can treat the 
sensors as dumb data suppliers and processes the raw data 
on the smartphone (“Dumb supplier” in the figure). Figure 3 
uses a skeleton code to illustrate the smartphone style for 
processing sensor data, which uses a clear interface in the 
object-oriented fashion. While very friendly to smartphone 
developers, this paradigm is extremely energy inefficient 
because moving excessive raw data over the wireless link 
consumes a lot of energy, and consequently reduces the bat-
tery lifetime of the phone and sensors.  
To improve the efficiency, many research prototypes, e.g. [6] 
[7], implement a fixed set of sensor routines to support a 
pre-defined set of data processing in the sensor (“Pre-
defined routines” in Figure 2). This is similar to the Appli-
cation Profiles provided by Bluetooth. While this approach 
improves energy efficiency for some applications, its lack of 
sensor programmability inevitably restricts developers to 
create applications that require novel, application-specific 
data processing. 
At the other extreme, the application developers can careful-
ly partition the data processing between the phone and the 
sensors, and then program both directly. While this para-
digm can be very efficient, it usually requires the developer 
to master sensor node-level programming, with low-level 
abstractions that are tightly coupled with various underlying 
platforms [8-11], and probably involves a different pro-
gramming language. For example, TinyOS requires devel-

  
Figure 2. The tension in developing sensor data processing 
for smartphone body sensor applications 
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Figure 1. The ecosystem for smartphone health applica-
tions promoted by Dandelion 
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opers using nesC language [12] to write sensor code as a set 
of software components. In addition, TinyOS requires de-
velopers to define events and commands as the interface for 
each component, and properly wire interfaces together. Al-
though very effective at programming nodes in wireless 
sensor networks, such programming requirements are for-
eign to many smartphone developers and are significantly 
different from existing smartphone programming styles. 
Macro-programming models at the network-level [13-15] 
target relatively large-scale sensor networks. The introduc-
tion of new language constructs such as new statements, 
predicates, rules, or task graphs, makes them even more 
difficult for smartphone programmers to manage. In short, 
the gap between the smartphone programming style and that 
of various sensor platforms constitutes a practical barrier for 
the majority of smartphone developers to leverage body 
sensors and create applications. 
2.2 Overview of Dandelion 
Our goal is to achieve both high efficiency and ease of de-
velopment by making sensor programming transparent to 
the smartphone developers (“Dandelion” in Figure 2). By 
“transparent”, we mean that smartphone developers do not 
have to deal with the native programming abstraction or 
hardware/software specifications of the sensor. Our solution 
toward this goal is Dandelion, a framework that allows 
smartphone application developers to “program” body sen-
sors by simply writing the code as a smartphone software 
module. Dandelion achieves such design goal with senselet, 
a smartphone-style, platform-agnostic programming abstrac-
tion for in-sensor data processing.  
Dandelion supports this abstraction from both the pro-
gramming aspect (Section  3) and the execution aspect (Sec-
tion  4). For programming support, Dandelion defines the 
degree of transparency with three key design decisions: a 
compact set of platform services for senselet to access plat-
form resource, the Remote Method Invocation (RMI) me-
chanism for integrating senselets with the application code 
running on the smartphone (called main body in this work), 
and the two-phase compilation technique for generating 
senselet executable. 

For execution support, Dandelion manages and executes 
senselets with its distributed middle layer or runtime system. 
The runtime system consists of a smartphone runtime com-
ponent and one or more sensor runtime components. Run-
time components communicate with messages. The smart-
phone runtime acts as the coordinator to command all sensor 
runtimes, and a sensor runtime fulfills such commands and 
executes the senselet code. 

3. Programming Support 
Toward making sensor programming transparent, Dandelion 
targets practical transparency. A complete transparency is 
ideal to the developer: the development and execution of a 
senselet will be indistinguishable from a smartphone soft-
ware module. However, such complete transparency is very 
expensive, if not impossible, given the huge discrepancy 
between the hardware and software environments on the 
smartphone and on body sensors. For example, implement-
ing coherent shared memory across the smartphone and sen-
sors incurs prohibitive overhead.  
Dandelion defines practical transparency for senselet with 
four design decisions: 1) hide platform-dependent pro-
gramming styles inside the template (Section  3.1), 2) choose 
a compact set of platform services as the unified interface to 
platform resources (Section  3.2), 3) use the RMI mechanism 
to transparently integrate senselets into the smartphone ap-
plication (Section  3.3), and 4) compile and distribute sense-
lets as platform-independent intermediate representations 
(IRs) and translate the IRs into platform-specific binaries 
during application installation (Section  3.4). We will discuss 
the four decisions in details below. 
3.1 Template for Senselet  
Senselet is the core of Dandelion that abstracts in-sensor 
data processing. As shown in the object-oriented skeleton 
code in Figure 4, a senselet is a subclass that inherits the 
virtual base SenseletBase. SenseletBase declares a concise 
interface as a set of virtual methods for concrete senselets. 
For example, the senselet class overrides OnCreate() to in-
itialize its states, and overrides OnData() to receive new 
sensor data for processing. Compared to various sensor na-
tive programming abstractions mentioned in Section  2.1, the 

 

class MySenselet : public SenseletBase { 
public: 
  // App-specific initialization  
  void OnCreate() {...}; 
  // App-specific finalization  
  void OnDestroy() {...}; 
 
  // Receive and process new sensor data  
  void OnData(data) {...}; 
private: 
  // All senselet states are private variables 
} 
 
// ... in the main body code ... 
LoadSenseletInstance(MySenselet); 

 
 

Figure 4. The skeleton code of a Senselet class  

 

class MySensorListener : SensorListener { 
public: 
  // called when the processing starts 
  OnCreate() { ... }; 
  // called when the processing stops 
  OnDestroy() { ... }; 
  // called when new sensor data is acquired 
  OnNewData(sensor_id, data) { ... }; 
private: 
  // private states as variables 
} 

 

 

Figure 3. Skeleton code for data processing on smartphone. 
This style for sensor data processing shown here is widely 
adopted by smartphone programming frameworks, includ-
ing Android, iPhone OS, Symbian S60, and Maemo 



 

senselet abstraction has three distinct features: 1) a just-fit 
interface for data processing, 2) smartphone style program-
ming (very close to the skeleton code shown in Figure 3), 
and 3) platform-independence. 
SenseletBase contains the template code written with sensor 
native programming abstraction, while leaving the imple-
mentation of the actual data processing to senselets. Essen-
tially, a SenseletBase class plays two important roles. First, 
it acts as an adaptor between the senselet abstraction and the 
sensor native programming abstraction. Second, it hides 
low-level platform configurations, e.g. hardware parameters 
from the developer. 
Since the implementation of a SenseletBase is platform-
specific, it is the sensor vendor’s responsibility to provide 
SenseletBase as a basic library. When a Dandelion applica-
tion is being installed on a smartphone, the developer-
provided senselet code is linked with vendor-provided Sen-
seletBase to generate the final senselet executable, as will be 
further addressed in Section 3.3. 
Example: We use a simple example in Figure 5 to illustrate 
how SenseletBase works as a template. Suppose that the 
sensor platform requires any of its software modules to be 
coded as an event loop. SenseletBase populates such an 
event loop in the function _EventLoop(), with dispatching 
events to the proper methods implemented by a concrete 
Senselet class (e.g. OnStart and OnData). 
3.2 Platform Services 
Dandelion abstracts platform resource as a set of platform 
services, which resemble system calls in traditional OS. In 
designing platform services, we seek to strike a balance be-
tween their portability and the flexibility of programming; 
more platform services allow the developer to program 
senselet in a more flexible way, but they may be supported 
by fewer platforms. 
By examining data processing in a wide range of body sen-
sor applications, both in the market and reported in litera-

ture, we identify three core platform services for senselets, 
as follows. 
Acquire sensor readings. Get raw sensor readings, using 
either pull mode, where senselet actively polls for readings:  

data = PollSensorData(sensor_id); 
or push mode, where the senselet requests runtime to pe-
riodically deliver readings, with: 

RegisterSensorData(sensor_id, rate); 
Sensor runtime delivers new reading to the senselet by in-
voking its OnData() method. 
Timer. A senselet may need to process data with timing, 
periodically or aperiodically. A senselet can register a timer 
with: 

timer_id = RegisterTimer (interval) 
Consequently, sensor runtime will invoke its OnTimer() me-
thod at the desired interval. The senselet can also use UnRe-
gisterTimer(timer_id) to cancel a registered timer. 
Memory management. A senselet can use Malloc() to re-
quest dynamic memory for storing intermediate processing 
results, and use Free() to release the memory after use. 
Finally, we note that new services can be added as they be-
come critical to data processing and widely supported by 
sensor platforms, e.g. storage. 
3.3 Remote Method Invocations 
A senselet executes on a body sensor, while the main appli-
cation body still runs on the smartphone. However, to logi-
cally work as an integral application, they need 1) transfer 
data to each other, e.g. a senselet passes preliminary results 
to the main body for further processing, and 2) transfer con-
trol flow to each other, e.g. the main body commands to 
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Figure 5. The internals of an example RMI PassData(). (a) 
The stub compiler generates both caller and callee stubs 
that translate the RMI into messages. Both main body and 
senselet can be caller or callee. (b) During the RMI, the 
caller transfers the data and its control flow to the callee 
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SenseletBase::_EventLoop (event_t *event){ 
  switch(event->type){ 
  case EVENT_INIT: 
    //...platform-dependent initialization 
    OnCreate(); 
    return; 
  case EVENT_DATA: 
    //...decode data from the event 
    OnData(data); 
    return; 
  case EVENT_RMI: 
    //...call corresponding RMI stubs 
    return; 
  } 
} 
//Assume MySenselet points to Senselet instance 
// Start an OS task with the event loop 
start_task(MySenselet->_EventLoop); 

 
 

Figure 6. Pseudo code of a simplified SenseletBase, as a tem-
plate to wrap an event loop skeleton for Senselet class 



 

change the sampling rate used by a senselet and waits for a 
confirmation from it. Rather than require developers to 
hand-code integration with messages, Dandelion employs 
remote method invocation as the solution to address both 
requirements. 
RMI is a cross-platform communication mechanism widely 
used in distributed systems such as Network File System. 
From the perspective of a developer, an RMI that happens 
between a senselet and the main body in Dandelion, appears 
to be very similar to a local call. All a developer needs to do 
is to specify the name and types of parameters used by the 
remote method, using Interface Description Language (IDL) 
[16]. All RMIs in Dandelion are synchronous, i.e. the caller 
returns after the remote method finishes execution. 
We provide a stub compiler that automatically generates the 
implementation of two stub procedures for a RMI, based on 
its IDL description. One stub is used by the caller to issue 
the RMI, with the data objects to transfer as method parame-
ters. When the caller stub is invoked, it creates a message 
and marshals method parameters into the message payload. 
The other stub procedure is used by the callee to un-marshal 
the parameters from the received message and actually calls 
the remote method. Figure 6(a) illustrates the roles of the 
programmer, stub compiler, and runtime in implementing a 
RMI.  
We choose RMI for integration because of two reasons. 
First, it is a widely used way for separated execution con-
texts to interact with each other. Second, IDL is already an 
essential part in smartphone development, e.g. AIDL in An-
droid [17], XML for dbus in Maemo [18]. Recent proposal 
to offload execution from mobile devices also leverage IDL-
based methods to serialize passed parameters [19].  
Shared memory is an alternative solution for data transfer: 
smartphone and sensor runtimes collaboratively implement 
a memory coherence protocol by exchanging messages. 
With this scheme, senselets and the main body can access 
shared variables. While it may be desirable to support 
shared memory for smartphone developers who may be un-
familiar with distributed programming, its overhead is sig-
nificant for body sensors, both in terms of implementation 
complexity and communication (i.e. frequently sending 
small memory updates over wireless link). 
Example: We use a simple but general example to show 
how RMI transfers data and control flow. In this example, 
the senselet calls a remote method defined in the main body, 
named PassData, to transfer processed data. The program-
mer describes the following method interface using XML-
style IDL [18]: 
     

    <method name=”PassData”> 

        <arg type=”ai” name=”Data” direction=”in” /> 

</method> 

 

The IDL description above indicates that the method Pass-
Data carries one parameter Data, which is an integer array 

(‘ai’). At compile time, our stub compiler generates the 
caller stub for the senselet: 
     

    void PassData (int *Data, int actual_len) {...}; 

 

The senselet code simply calls PassData()provided by the 
caller stub to send the integer array, and the main body ac-
cordingly implements the method PassData()to receive the 
array. It is worth noting that during the RMI, the senselet 
code in fact transfers its control flow to the main body (as 
shown in Figure 6(b)). Therefore, upon returning from 
PassData(), the senselet is ensured that the execution of 
remote method in the main body is finished. This guarantee 
is especially important when the main body uses RMI to 
configure the senselet, e.g. change the data sampling rate. 
3.4 Senselet Executable Generation 
The challenge of generating senselet executable comes from 
our design goal of platform transparency: platforms may 
have various Instruction Set Architectures (ISAs) that de-
velopers may not know about. One possible solution to 
bridge the ISA gap is Virtual Machine (VM). With the same 
VM installed on all target platforms, a senselet can be com-
piled into VM byte code and then interpreted by a VM dur-
ing execution. Although light-weight VMs [20] have been 
developed for low-power processors to perform simple con-
trol tasks, the overhead of VM interpretation is still high for 
intensive data processing (10 times or more compared to 
native binary [21]). 
Therefore, Dandelion adopts the two-phase compilation 
technique that has been used for other heterogeneous distri-
buted systems such as [22]. A developer compiles a senselet 
into intermediate representation (IR) before distribution 
(first phase). When a smartphone user installs the distribu-
tion (second phase) on her phone, the corresponding cross-
compiler for her sensor translates the IR into sensor native 
binary. This technique relieves the application developer 
from worrying about various sensor ISAs while achieving 
the high performance of native execution. 

4. Execution Support 
The architecture of a running Dandelion system is shown in 
Figure 7. Dandelion employs a distributed middle layer or 
runtime to manage the execution and communication of 

 
Figure 7. The overview of Dandelion runtime architecture 
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senselets. It also provides resource exception to support 
application-specific handling of resource depletion during 
senselet execution. 
4.1 Dandelion Runtime System 
The Dandelion runtime, as the core of execution support, 
consists of multiple component runtimes: one smartphone 
runtime and one or more sensor runtimes. Component run-
times communicate with each other through messages. They 
employ a common message format to serve both RMIs in 
application code and runtime management functions. While 
messaging is the building block of Dandelion communica-
tion, it is only visible inside the runtime system and totally 
transparent to the application.  
4.1.1 Smartphone Runtime  
As the coordinator of the runtime system, the smartphone 
runtime serves three key management functions. First, when 
a body sensor application starts, the smartphone runtime 
discovers sensors by querying sensor runtimes. Second, the 
smartphone runtime manages the network connections be-
tween the smartphone and sensors according to the applica-
tion requirement. It does so with existing networking capa-
bility, e.g. Bluetooth Serial Port Profile. Finally, the smart-
phone runtime sends senselet native binaries to the corres-
ponding sensor runtimes for execution and stops senselet 
execution under the application’s request. Again, the com-
munication between the smartphone runtime and the sensor 
runtimes is based on messages described above. 
4.1.2 Sensor Runtime 
To minimize the complexity and execution overhead of the 
sensor software stack, we opt a minimalist design for sensor 
runtime. A sensor runtime provides two core functions: 1) it 
implements the very small set of platform services for 
senselets, as described in Section 3.2 and 2) it fulfills man-
agement commands from the smartphone runtime. For func-
tion 2, to further reduce the complexity of sensor runtime, 
we carefully leave most functions to smartphone runtime. 
For instance, to load a new senselet for execution, we per-
form the dynamic linking of the executable on the smart-
phone instead of within the sensor runtime [21], so that the 
sensor runtime only needs to receive and copy the linked 
executable into sensor memory. 
With this minimalist design, the sensor runtime is very 
lightweight in terms of memory and processor usage. Fur-
thermore, the sensor runtime only requires a minimal set of 
primitives, namely interrupt handling, digitalized sensor 
output, and the configurable timer, from the underlying plat-
form. As a result, the Dandelion sensor runtime can be built 
on top of various embedded OSes, e.g. uC/OSII, Mantis, 
TinyOS, SOS, Contiki, and with diverse sensor hardware, 
e.g. MSP430, ARM7, AVR. We will evaluate the sensor 
runtime design in Section 6. 

4.2 Senselet Resource Exception  
Due to the highly limited computing resources on body sen-
sors, a senselet is likely to run out of resources. Unfortu-
nately, it can be hard for developers to match senselet re-
source demand with available platform resources. On one 
hand, developers may have limited knowledge about target 
platforms; on the other hand, senselet resource demands 
may vary significantly during its execution (e.g. changing 
sampling rate with human activity). 
Dandelion supports resource exception to let developers 
gracefully deal with such resource mismatch during execu-
tion, in an application-specific manner. We define two types 
of resource exceptions for senselet: 
• TimeException is raised when running out of processor 

time: e.g. senselet fails to process the sensor data faster 
than the data is supplied; 

• MemException is raised when running out of memory: 
e.g. the stack is going to overflow. 

The sensor runtime monitors platform resource utilization in 
a platform-specific way, e.g. read processor utilization from 
the scheduler, and raises exceptions by invoking corres-
ponding exception handlers in senselet. Resource exception 
provides enough flexibility for application code to adapt to 
constrained sensor resource. For instance, when TimeEx-
ception is raised, senselet code may lower its sampling rate 
and notify the main body with a RMI.  

5. Prototype Realization 
We have built a Dandelion prototype using Nokia N900, a 
smartphone based on Maemo Linux, and Rice Orbit, a mul-
ti-purpose sensor platform with a TI MSP430 microcontrol-
ler and a Bluetooth interface. Rice Orbit also has a tri-axis 
accelerometer that can be utilized for human activity moni-
toring, and an amplified analog input that can be used to 
sample Electrocardiogram (EKG) signals. Rice Orbit works 
with a variety of embedded OSes that support TI MSP430, 
including µC/OS-II, SOS, Contiki, and TinyOS. 
Smartphone-side software 
We implement the smartphone runtime using around 1000 
lines of C++ code and link it as a static library with the main 
body. The smartphone runtime only requires network capa-
bility from the smartphone platform, therefore it is highly 
portable and can therefore be realized with all current 

 
Figure 8. The Dandelion prototype hardware, based on Nokia 
N900 smartphone (left) and Rice Orbit body sensor (right)  



 

smartphone platforms we are aware of, including Maemo, 
iPhone, Android, and S60. 
We have built a stub compiler that takes IDL description to 
generate RMI stub source code for both the main body and 
senselets. We implement such stub compiler with around 
500 lines of Python code, by referring to dbus implementa-
tion [23].  
We have validated the feasibility of two-phase compilation 
by using LLVM-msp430, a high-efficient compiler infra-
structure with an experimental MSP430 backend, to suc-
cessfully build simple senselets with two phases. However, 
since the MSP430 backend is under heavy development, in 
the evaluation we still choose MSPGCC, the widely-used 
MSP430 port of gcc, as the C/C++ compiler kit to produce 
senselet binaries. As LLVM-msp430 matures, we expect it 
to produce production-quality MSP430 binary with two-
phase compilation. 
Sensor-side software 
We implement the Dandelion sensor runtime on top of 
µC/OS-II [24], a popular, lean OS for resource-constrained 
embedded systems. Since µC/OS-II provides no direct sup-
port for any of three platform service, we only rely on it for 
multitasking and implement all platform services inside 
sensor runtime. We use a µC/OS-II task to implement sen-
sor runtime management functions, and use another task to 
execute senselet code (with a fixed 64 byte stack).  
The sensor runtime is highly portable, thanks to its minimal-
ist design. Its two major components, platform services and 
management functions can be similarly realized on top of 
most embedded OSes. In many cases, the platform services 
are just thin wrappers over existing OS support. It is worth 
noting that protothreads [11] can be used to implement 
blocking in synchronous RMI with a negligible overhead of 
2 bytes, which is useful for purely event-driven OSes that 

lack direct support of blocking. What’s more, even without 
an underlying OS, it is possible to build sensor runtime on 
bare-metal with the following four hardware primitives: 1) 
hardware interrupts, 2) access to digitalized sensor data, e.g. 
through a built-in ADC or a digital interface with the sens-
ing apparatus, 3) a configurable timer, and 4) a bi-
directional, interrupt-enabled communication port that 
enables network capability. Such hardware primitives are 
available on most 16-bit and even some 8-bit microcontrol-
lers.  

6. Evaluation 
To evaluate if Dandelion achieves its design goal, we devel-
op in-sensor data processing from three real-world smart-
phone health applications and in three alternative styles: 1) 
the bare-bone style, without embedded OS or Dandelion; 2) 
the embedded-OS style, implemented with an event loop; 3) 
the Dandelion style, implemented as senselets. We compare 
the developers’ burdens in coding in these three styles by 
examining the resulted source code. To understand the cost 
in supporting transparency, we also experimentally quantify 
the memory and execution overhead of senselet and Dande-
lion runtime. 
6.1 Benchmark Health Applications 
We use the following three real-world applications in the 
benchmark: 
FallDectector uses a wearable accelerometer to detect fall 
accidents occurred to the user and raises an alert to the main 
body accordingly. The main body reacts by sending out an 
SMS to registered phone numbers.. 
The EKG application [25] monitors the user’s heart rate by 
calculating the average RR interval in the real-time EKG 
trace. The main body can retrieve the calculated heart rate, 
or raw EKG traces for further analysis.  
Pedometer [26] uses a shoe-mounted accelerometer to count 
user steps and recognize walking distance, and further cal-
culates walking speed and consumed calorie. The main body 
regulates the thresholds for steps, speed, or consumed calo-
rie, all calculated in the senselet. The senselet in turn noti-
fies the main body when any quantity exceeds its threshold. 
The main body can also poll these quantities.  
6.2 Source Code Examination 
We use FallDetector as the simplest example to compare 
developer’s burdens in three programming styles. The data 
processing is simple: measure the acceleration energy (cal-
culated as the magnitude of X, Y, Z readings) and apply a 
simple low-pass filter to the energy trace. If the filtered 
energy exceeds a pre-defined threshold, an alert is raised to 
the main body.  
The FallDetector senselet is shown in Figure 9, which con-
sists of only 17 lines of C++ code. The OnCreate() method 
requests periodic accelerometer readings at 50 Hz. Later on, 
OnData()is invoked by sensor runtime when new reading is 
acquired. OnData() detects fall accident and raises the alert 

 

class SenseletFall : public SenseletBase { 
public: 
  SenseletFall () {_avg_energy = 0;}; 
     
  void OnCreate() {RegisterSensorData(ACCEL, 50);}; 
 
  void OnData(uint8_t *readings, uint16_t len) { 
    uint16_t energy = readings[0]*readings[0] + \ 
                      readings[1]*readings[1] + \ 
                      readings[2]*readings[2]; 
    //do a simple low-pass filtering 
    _avg_energy = _avg_energy / 2 + energy / 2; 
     
    // detect fall accident with the filtered energy  
    if (_avg_energy > THRESHOLD) { 
      theMainBody.FallAlert();  //RMI 
    } 
  } 
 
  void OnDestroy() {UnRegisterSensorData(ACCEL);}; 
 
private: 
  uint16_t _avg_energy;                 
}; 
 

 

Figure 9. An implementation of FallDetector with senselet 



 

by invoking the remote method FallAlert() of the main body. 
Senselet abstraction relieves the developer from dealing 
with hardware and communication details.  
For comparison, we also write FallDetector in the form of a 
main event loop, which is used for tasks with many embed-
ded OSes, e.g. SOS, Contiki, and µC/OS-II. In developing 
the code, we favorably assume that the OS provides all peri-
pheral drivers, event queues, and supports blocking, which 
may not be true for all. Even with this favorable assumption, 
the same data processing takes three times as many lines of 
code. The bare-metal implementation is even more verbose. 
While it also implements a main loop driven by several 
hardware interrupts to perform processing and communica-
tion, it has to deal all low-level, hardware-related operations, 
e.g. manually triggering the power state transitions. 
The same observations also apply to other two benchmark 
applications (source statistics in Table 1). As reflected in the 
numbers of source lines, without Dandelion support, com-
plex data processing and communication requires more pro-
gramming efforts; what is even worse, the resulting code is 
non-portable and error-prone.  
By further comparing the source code, we can see Dande-
lion saves considerable development efforts in three aspects.  

First, senselet only exposes to developers a very concise 
interface necessary for in-sensor data processing. The other 
two direct sensor programming styles put extra burden on 
developers: populate a main loop woven with the data 
processing and drive the loop with (sometimes low-level) 
events.  
Second, the use of RMI facilitates integration and relieves 
the developer from dealing with smartphone-sensor com-
munication. Compared to issuing a RMI with a single line in 
senselet, the other two styles need to spend 30-50 lines of 
code to manually construct a message and send through the 
wireless link, when accounting for link reliability. Addition-
ally, the bare-bone code has to manage the power state of 
Bluetooth interface. 
Third, platform independence makes senselet code portable. 
For example, to periodically acquire sensor readings; em-
bedded OS style requires using timer event to drive the ac-
quisition, while the bare-bone style additionally requires 
manually configure ADC. In contrast, Dandelion sensor 
reading service covers these differences.  

6.3 Overhead Measurements 
We measure the overhead of Dandelion framework in terms 
of both memory consumption and processor cycle consump-
tion. In the measurement, we compiled all code using 
MSPGCC version 3.2.3, with optimization level -O2. We 
are aware of that the overhead is affected by the choice of 
the underlying OS: complete support for runtime functional-
ities from OS can largely simplify sensor runtime imple-
mentation and therefore reduces its overhead. In the evalua-
tion, we estimate the upper limit of runtime overhead by 
using µC/OS-II merely for multitasking, and implement 
most sensor runtime functionalities from scratch, instead of 
choosing many other embedded OSes with existing support 
for peripheral drivers, timer, or communication.  
6.3.1 Memory Overhead 
We break down the memory overhead of Dandelion into 
two parts: 1) that of sensor runtime, and 2) that of senselet 
executable, including template and RMI stubs, as shown in 
Table 2 and Table 3. 
The runtime memory overhead, due to the minimalist design, 
is a small constant: 180 bytes of RAM and 1746 bytes of 
ROM. For the second part, in a single senselet executable, 
template takes a small, fixed amount memory. Additionally, 
each RMI stub only uses 50-100 bytes ROM. For a typical 
sensor controller, the TI MSP430F161 (10KB RAM, 48KB 
ROM) that is widely used in various sensors such as Rice 
Orbit and Shimmer[27], the fixed overhead is less than 5% 
of the whole memory. 
The measurements have two implications. First, the small 
overall memory overhead allows Dandelion be implemented 
with many resource-constrained sensors. Second, the com-
pact template and RMI stubs incur small energy overhead 
when a senselet executable is transmitted over wireless link. 

Table 1. The source lines of code in developing in-sensor 
data processing, with different programming styles  

Style FallDetector EKG  Pedometer  
Dandelion 17 96 158 
Embedded OS 72 146 248 
Bare-bone 84 194 296 

 

Table 2. Memory breakdown of sensor runtime, in byte 
Module RAM ROM 
Sensor reading service 12 144 
Timer service 36 250 
Memory management service 4 248 
Message communication 64 286 
Management functions 64 818 
Total 180 1746 

 

Table 3. Memory overhead of senselet executables, in byte 
and the percentage of the whole sensor memory. Assume 
whole memory of 10KB RAM and 48KB ROM  

Code part FallDetector EKG Pedometer 
RAM ROM RAM ROM RAM ROM 

Template 64 324 64 324 64 324 
RMI stubs 0 54 0 56 0 210 
Total  64 378 64 380 64 534 
% of whole 0.6% 0.8% 0.7% 0.8% 0.7% 1.1% 



 

6.3.2 Execution Overhead 

To gain insight into the execution overhead of a senselet, we 
first measure execution overhead in common operations of 
sensor runtime. Note that we do not include cycles spent on 
sending and receiving message bytes into message RX/TX 
overhead. Further, the overhead of an RMI varies with the 
number and types of its parameters, and 300 cycles are typi-
cal for passing an integer array. Results in Table 4 show that 
the sensor runtime incurs small execution overhead; with a 
typical processor clock rate of 4MHz, even the most costly 
operation, message RX, takes less than 250 us. 
To estimate the execution overhead in long-run, we further 
measure the performance of the most common execution 
path in senselets. Since in all three senselets data processing 
is driven by periodic sampling, we define such path as data 
processing performed in each sampling period (without RMI 
involved), e.g. EKG senselet reads in new data and com-
putes to determine if it is in R wave. The results in Table 5 
show that, even as the data processing becomes intensive, 
Dandelion execution overhead remains small (around 250 
cycles). Even with the most challenging EKG benchmark, 
where data processing consumes around 3900 cycles (~50% 
of processor time) in every 2 ms sampling period, the execu-
tion overhead only takes ~3% processor time. We have ob-
served that the execution overhead comes from timer notifi-
cation, sensor reading, and the template code.  

7. Related work 
Dandelion allows a smartphone developer to use body sen-
sors in her program without directly programming the sen-
sors or dealing with the sensor hardware/software. It is re-
lated to three seemingly disparate groups of work.  
The first group provides programming frameworks to body 
sensor networks, including MobiCare [28], CodeBlue [29], 
and SPINE [6]. Some of them facilitate application devel-
opment by providing pre-defined functions in sensors. For 
example, SPINE provides a portable library for in-sensor 
signal processing. While they are effective for particular 
applications that use such pre-defined functions, compared 
to Dandelion, they have very limited sensor programmabili-
ty, as discussed in Section 2.1. 
The second group of related work addresses the program-
ming models of wireless sensor networks (WSN) in general. 
Solutions such as nesC [12] and protothreads [11] provide 
node-level programming abstractions. Macro-programming 
[13-15] enables developing WSN applications by describing 
the network-level behavior. While successful for compli-
cated WSN applications, such programming styles signifi-
cantly differ from those used in smartphone application de-
velopment, making it is difficult for smartphone developers 
to adopt them. In contrast, Dandelion leverages the simplici-
ty of smartphone-centered body sensor networks and focus-
es on supporting in-sensor data processing tasks. With this 
trade-off, Dandelion is able to provide transparency in pro-
gramming style. 

Finally, the third group of related work employs heteroge-
neous distributed systems and support different levels of 
programming transparency. In most cases, e.g. [30-32], the 
programmer has to program each platform in the system 
directly without any transparency. Some systems support 
programming transparency with an unified OS abstraction 
or distributed runtime system, mostly based on a virtual-
machine approach [22] to hide ISA variances. This approach, 
however, proves to be inefficient on resource-constrained 
sensors [20, 21]. In contrast, Dandelion achieves transpa-
rency by limiting the senselet functions to data processing 
and by introducing an extra compilation phase to produce 
sensor native binaries during application installation. 

8. Conclusion 
We present Dandelion, a novel programming framework for 
phone-centered wireless body sensor applications. Dande-
lion allows developers to easily write data processing code 
to be executed on sensors, in a programming style similar to 
traditional smartphone development. With the minimalist 
design of the runtime system, Dandelion incurs very small 
overhead and therefore can be easily ported to various re-
source-constrained sensor platforms. We believe that by 
enabling smartphone developers to easily write body sensor 
code, Dandelion supports a healthy ecosystem that promotes 
the interests of all involved parties: sensor vendors, smart-
phone developers, and users. 
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Table 4. Execution overhead in common sensor runtime 
operations, in processor cycles  

Operation #Cycles Operations # Cycles 
Timer notification 53 Sensor reading 130-168 
RMI 50-300 Load senselet 716 
Message RX 924 Message TX 720 
Malloc 239 Free 120 

 
Table 5. Execution overhead in the most common data 
processing path, in processor cycles and the percentage 
of processor time in each sampling period. FallDetector 
and Pedometer acquire sensor data at 50Hz, while EKG 
does at 512Hz. Assume a clock rate of 4MHz 

Execution overhead FallDetector EKG Pedometer 
# Cycles 251 221 251 
% per sampling period 0.3% 3% 0.3% 
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